
1 June 1998 Delphi Informant

June 1998, Volume 4, Number 6

WinSock 2
Translating a Tower of Babble

Cover Art By: Tom McKeith

ON THE COVER
6 WinSock 2 � John Penman
WinSock 1.1 simply wasn’t designed to handle multimedia Internet
applications. Enter WinSock 2 with support for multiple transport proto-
cols, protocol-independent name resolution, and much more. Mr Penman
explains how Delphi developers can take advantage of the new features.

FEATURES
11 OP Tech
Delphi Import/Export: Part II � Bill Todd
Mr Todd finishes his series with a look at objects with built-in
LoadFromFile and SaveToFile methods, and — when the reading and
writing gets tough — using TFileStream objects.

15 Algorithms
Tough Decisions � Rod Stephens
Mr Stephens explains decision trees, data structures you can use to
model difficult decisions, and how to implement them. He also demon-
strates several ways you can search even the largest decision trees.

20 DBNavigator
Run-time Type Information � Cary Jensen, Ph.D.
RTTI is information about the published properties of classes that the
compiler stores in an executable. Dr Jensen shows how to use routines
from the typinfo unit to extract this information at run time.

24 Dynamic Delphi
COM Callbacks: Part I � Binh Ly
You won’t find much documentation about writing COM callbacks using
Delphi. Fortunately, there’s Mr Ly’s two-part tutorial. This month’s
article offers a hand-coded callback interface manager.

28 Delphi at Work
Pirates Beware! � Stephen R. Broadwell
Looking for a straightforward way to keep consumers from pirating
the fruits of your labor? Mr Broadwell offers a peach of a component
named TSeatChecker.

33 Greater Delphi
Formula Compiler � Vladimir Safin
Mr Safin presents a set of Delphi components that allow mathemati-
cal functions to be quickly evaluated at run time — one to two and
a half times faster than hard-coded Delphi.

REVIEWS
38 OnGuard

Product Review by Alan C. Moore, Ph.D.

43 Collaborative Computing with Delphi 3
Book Review by Alan C. Moore, Ph.D.

43 Learn Graphics File Programming with Delphi 3
Book Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
5 Newsline
46 From the Trenches by Dan Miser
47 File | New by Alan C. Moore, Ph.D.

2 June 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Research Systems Announces IDL 5.1

NNaatthhaann WWaallllaaccee’’ss DDeellpphhii 33
EExxaammppllee BBooookk

Nathan Wallace
Wordware Publishing, Inc.

IISSBBNN:: 1-55622-490-7
PPrriiccee:: US$54.95

(851 pages, CD-ROM)
PPhhoonnee:: (972) 423-0090
Research Systems, Inc.
announced the availability
of IDL 5.1, an updated ver-
sion of the company’s tech-
nical visualization and devel-
opment software. This ver-
sion offers support for
Microsoft’s ActiveX, allow-
ing users to integrate IDL
Inner Media Delivers Act
capabilities such as graphics
and data analysis with
COM-enabled environ-
ments (including Delphi).
The ActiveX control pro-
vides Windows developers
with direct, native access to
IDL from within their
development environment.
ive Delivery
In addition, IDL 5.1
includes native Clipboard
support, enhanced truetype
font support, basic linear
algebra subroutines, perfor-
mance-tuned statistics rou-
tines with improved user
interfaces, and enhance-
ments to the LIVE_TOOLs
visualization components.

IDL 5.1 is available for
Windows 95, Windows NT,
Mac OS, UNIX (Solaris,
HP-UX, IRIX, Digital
UNIX, and AIX), Linux,
and Open VMS.

Research Systems, Inc.
Price: From US$1,500 for Windows,
Mac OS, and Linux; from US$3,495 for
UNIX and Open VMS.
Phone: (303) 786-9900
Web Site: http://www.rsinc.com
Inner Media, Inc. delivered
Active Delivery, a self-
extracting ZIP file toolkit for
developers. With Active
Delivery, Windows develop-
ers and non-technical con-
tent creators can package any
data and/or programs into
self-extracting ZIP files
(Active Delivery Packages)
for transmittal via Internet,
intranet, e-mail, or other
data-sharing architectures.
These packages are then exe-
cuted on the client
machine, and can run pro-
grams, extract and/or
decrypt files, register
libraries, and display
Readme files. Active
Delivery also supports cus-
tomization of user mes-
sages for localization and
international requirements.

Active Delivery provides
wizard-based and program-
matic Windows-based
APIs. Using the provided
interfaces (DLL, VCL,
OCX/ActiveX), developers
can call into Active
Delivery and tell it what
files to add, how the Active
Delivery Package is to appear,
what external programs to
run, etc. Developers can then
ship the Active Delivery
libraries royalty-free with any
number of products.

Active Delivery supports
many languages, including
Delphi, C/C++, and Visual
Basic. Active Delivery
Packages may be cus-
tomized to set registry vari-
ables and register libraries,
as well as run specified pro-
grams. Active Delivery
Packages may be created as
16- or 32-bit executables.

Inner Media, Inc.
Price: US$249; US$384 for Pro Pack;
discount for registered owners of
DynaZIP when purchasing Active
Delivery from Inner Media.
Phone: (800) 962-2949 or
(603) 465-3216
Web Site: http://www.-
innermedia.com

http://www.rsinc.com
http://www.innermedia.com
http://www.innermedia.com

3 June 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

HyperAct Introduces eAuthor Help 2.0

TThhee TToommeess ooff DDeellpphhii 33::
WWiinn3322 GGrraapphhiiccaall AAPPII

John Ayres, et al.
Wordware Publishing, Inc.

IISSBBNN:: 1-55622-610-1
PPrriiccee:: US$54.95

(879 pages, CD-ROM)
PPhhoonnee:: (972) 423-0090
HyperAct, Inc., a provider
of Web authoring and e-
commerce tools, announced
eAuthor Help 2.0, a tem-
plate-based RAD tool for
large-scale Web sites and
HTML Help projects.

This release includes several
new features, including the
ability to import an entire
site from an HTML page by
following all its local links,
and the ability to add
HTML Help information-
type support in the HTML
Help Project template and an
Information Types property
to all the content templates.

eAuthor Help 2.0 also
includes enhancements to
existing features, such as a
simplified tag insertion dia-
log box in the HTML
Chunk Editor; HTML-based
templates that can define
Digital Metaphors Introd
default values to HTML
Table fields display parame-
ters; and a template engine
that adds two built-in
replaceable fields.

In addition, several bugs
have been fixed, including
the Automatic editor focus,
which will be disabled if the
editor is not already visible.

eAuthor Help 2.0 features
uces ReportBuilder 3.5
Delphi and C++Builder com-
ponents, plus an ActiveX
control that can be added to
the Visual Basic toolbox
palette to embed HTML
Help windows in forms.

HyperAct, Inc.
Price: US$149
Phone: (402) 891-8827
Web Site: http://www.hyperact.com
Digital Metaphors
announced ReportBuilder
3.5, a renamed and enhanced
release of Piparti 3.0, the
company’s reporting tool for
Delphi. ReportBuilder 3.5
adds an Office97-style user
interface, a bar code compo-
nent, a TeeChart component,
archiving capabilities, drill-
down subreports, a clickable
print preview compo-
nent, and the RCL
(Report Component
Library). The RCL
allows developers to
create report compo-
nents and install them
as a native part of the
product. This capabili-
ty, combined with the
Open Data Access and
Open Data Output
architectures, allows
ReportBuilder 3.5 to be
extended or enhanced
in all areas without
changing the source.

ReportBuilder and its
professional version,
ReportBuilder Pro, are avail-
able for Delphi 1, 2, and 3.

Technically, the Delphi
implementation of the
product remains the same,
with no changes to class or
unit names. Although the
installation directories and
online documentation have
been changed to reflect the
new name, reports created
with previous versions of
Piparti or Piparti Pro are
fully compatible with
ReportBuilder.

Digital Metaphors
Price: ReportBuilder 3.5, US$249;
ReportBuilder Pro 3.5, US$495.
Phone: (214) 800-8760
Web Site: http://www.-
digital-metaphors.com

http://www.hyperact.com
http://www.digital-metaphors.com
http://www.digital-metaphors.com

4 June 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Tetradyne Releases SourceView ActiveX Control

CCoollllaabboorraattiivvee CCoommppuuttiinngg
wwiitthh DDeellpphhii 33
James Callan

Wordware Publishing, Inc.

IISSBBNN:: 1-55622-554-7
PPrriiccee:: US$59.95

(827 pages, CD-ROM)
PPhhoonnee:: (972) 423-0090
Tetradyne Software, Inc.
announced the release of
the SourceView ActiveX
control, a customizable
syntax-highlighting text
editor component.

SourceView can be cus-
tomized for the coloring of
any language syntax by set-
ting control properties. For
complex syntax require-
ments, OLE interface
hooks are provided to plug
in a parsing implementa-
tion developed in any lan-
guage. Delphi, Visual Basic,
and C++ examples are pro-
vided for coloring of C,
Pascal, BASIC, and HTML
syntax.

Developers using tools
such as Borland’s Delphi 3
and Microsoft’s Visual Basic
5 can provide margin
bitmaps and other custom
display elements by imple-
menting OLE interfaces
defined by the SourceView
ActiveX control. Using
20/20 Software Ships sof
these features, developers
can display breakpoints,
bookmarks, and other cus-
tom line attributes.

SourceView also offers
document-view architecture
(multiple controls can be
connected to a single text
document), undo/redo,
search-and-replace,
UNICODE support, print-
ing support, flexible event-
handling options, and sup-
port for extra per-line data.

Tetradyne Software, Inc.
Price: US$299 for single developer
license and unlimited redistribution with
applications; multi-developer discounts
are available.
Phone: (408) 377-6367
Web Site: http://www.tetradyne.com
20/20 Software, Inc. intro-
duced softSENTRY 2, an
enhanced version of its trial-
ware and software protection
tool. softSENTRY 2 works
by injecting directly into
executable files, or by calling
a .DLL file. Added
to softSENTRY are
support for software
subscription licens-
ing and protection
of optional modules,
which give software
developers more
alternatives for pro-
tecting their intellec-
tual property.

In addition,
softSENTRY 2
offers increased flexi-
bility, up to 10 pass-
words, flexible for-
mula passwords,
tighter integration
with PC-Install,
tSENTRY 2
more time limitation
options, and a new open
architecture.

20/20 Software, Inc.
Price: US$249 for 16- or 32-bit
“Lite” version; US$695 for complete
version (includes 16- and 32-bit ver-
sions, plus additional features); regis-
tered owners who purchased
softSENTRY 1.1 after January 1, 1998
receive a free upgrade.
Phone: (800) 735-2020
Web Site: http://www.twenty.com

http://www.tetradyne.com

5 June 1998 Delphi Informant

News
L I N E

June 1998

Borland Completes Acquisition of Visigenic

Borland Ships Delphi/Connect for SAP
Scotts Valley, CA — Borland
announced it has completed
its acquisition of Visigenic
Software, Inc. Borland also
announced that Roger Sippl,
founder and former CEO of
Visigenic, has been named
the company’s Chief
Technology Officer, report-
ing to Borland Chairman
and CEO, Del Yocam.

The combined operations
of the companies will be
conducted under the name
Borland International, Inc.,
and will be headquartered in
Scotts Valley, CA. Borland’s
common stock will continue
to be traded on the NAS-
DAQ National Market
System under the symbol
BORL. The approximate
Borland Brings Java to th
JBuilder/400 Client/Serve
value of the transaction is
US$111 million. The com-
bined revenues of Borland
and Visigenic in calendar
year 1997 were approximate-
ly US$188 million.

Also, Borland anticipates a
restructuring charge in its fis-
cal first quarter. As part of
the acquisition, Borland plans
e AS/400 with
r Suite

Borland Japan Adds Ente
Support Staff
to maintain a development
facility at Visigenic’s previous
corporate headquarters in San
Mateo, CA.

Founded in 1993,
Visigenic has been a
provider of CORBA distrib-
uted object technology for
integrating heterogeneous
software environments.
Berlin, Germany and Scotts
Valley, CA — Borland
announced the availability of
Delphi/Connect for SAP, a
development environment for
corporations building cus-
tomized software applications
that integrate with SAP R/3
enterprise systems.

Delphi/Connect for SAP
leverages the SAP Business
Framework and enables exist-
ing systems to evolve as newer
technology is implemented,
allowing developers to use
Delphi to access the R/3.

Delphi/Connect for SAP
prices start at US$7,500.

In a related story, a Web site
promoting SAP AG’s Open
BAPI (Business Application
Programming Interface)
Network is using
Delphi/Connect for SAP and
InterBase Software Corp.’s
SQL database to store and
publish technical informa-
tion. The Web site is located
at http://cps.sap-ag.de/bapi/-
sapwebisapi.dll.

Borland also announced it
has joined SAP’s Comp-
lementary Software Program
as an SAP BAPI Validated
Partner.
rprise Sales and
San Francisco, CA —
Borland and IBM
announced a joint market-
ing relationship built
around the JBuilder/400
Client/Server Suite,
Borland’s Java development
tool for the AS/400 plat-
form. The announcement
was made in conjunction
with IBM’s release of the
new version of the AS/400
operating system, OS/400
V4R2, and its Java virtual
machine.

JBuilder/400 integrates
the IBM AS/400 Toolbox
for Java with the JBuilder
environment, providing
pure Java JDBC access to
AS/400 data and Java access
to all native AS/400 ser-
vices, such as Record Level
Access, SQL access,
DataQueues, API Program
calls, Command Calls, and
IFS. JBuilder/400
Client/Server Suite also
includes additional AS/400-
specific features and wizards
to assist corporate develop-
ers in learning Java.
Applications developed
with JBuilder/400 can run
on any client that supports
a JDK 1.1-compliant virtual
machine or on the AS/400
server (V4R2 or later), and
can be partitioned between
client and server.

For more information on
JBuilder/400, visit
http://www.borland.com/-
borland400/.
Scotts Valley, CA — Borland
announced it has expanded
its Japanese subsidiary to
focus on the enterprise devel-
opment market. Borland will
add approximately 15 sales,
consulting, and support staff
who had previously worked
for OEC Japan, a joint ven-
ture between Borland and
CSK Corporation (CSK is
an information processing
and computer services firm
based in Tokyo). Borland
and CSK have agreed to dis-
continue the joint venture.

The expansion of Borland’s
enterprise sales in Japan is
part of an effort aimed at
accelerating Borland’s growth
as a provider of enterprise
development products and
technologies. As a result of
this and other moves in the
past year, over 50 percent of
Borland’s revenue comes
from corporate and enter-
prise products.

The new team will be
responsible for selling the full
suite of Borland enterprise
products and technology,
including the Visigenic
Software product line.
In the “File | New” col-
umn (page 41) of the

April 1998 issue of Delphi
Informant, we mistakenly

printed an inaccurate
URL for Eagle Software’s

Web site. The correct
URL is http://www.-
eagle-software.com.

We apologize for any con-
fusion or inconvenience
this may have caused.

Errors and Omissions

http://www.eagle-software.com
http://www.eagle-software.com
http://www.borland.com/borland400/
http://www.borland.com/borland400/

6 June 1998 Delphi Informant

WinSock 2
Part I: Translating a Tower of Babble

On the Cover
Delphi 3 / WinSock 2

By John Penman
W inSock 1.1 came into being in 1993, and has become the bedrock for
popular Windows-based Internet applications such as Internet Explorer,

Netscape, and a host of others. One of the more popular Delphi WinSock com-
ponents is dWinsock, which also uses WinSock 1.1.
So why do we need WinSock 2, if WinSock
1.1 has proven to be such an excellent API for
creating TCP/IP applications? The short
answer is that WinSock 1.1 wasn’t designed
to handle the explosive growth in multimedia
Internet applications. The WinSock Group,
which includes firms like Microsoft, Intel,
Novell, and DEC, as well as software develop-
ers all over the world, started its work in
1995. The group designed the Windows
Sockets Interface Version 2 (WinSock 2) to
meet the challenge of emerging communica-
tions technologies such as real-time multi-
media communications based on a protocol-
independent transport interface. Windows
Sockets Version 2 extends the interface con-
siderably to include the following:

Access to other transport protocols other
than TCP/IP.
Coexistence of multiple transport proto-
cols using one WinSock DLL.
Protocol-independent name resolution.
Overlapped I/O with scatter and gather.
Quality of Service (not yet implemented).
Protocol-independent Multicast and
Multipoint.
Conditional Acceptance (not yet imple-
mented).
Connect and disconnect data (not yet
implemented).
Miscellaneous extensions, such as shared
sockets.
Layered Service Providers.

Although WinSock 2 packs more function-
ality, it is backwards-compatible with
WinSock 1.1, so all existing WinSock 1.1
applications — including those developed
in all incarnations of Delphi — can run as
before. However, additional features make
the WinSock 2 interface trickier to use —
at least with the new features. This short
series of articles will bring you up to speed
with developing WinSock 2 applications
using 32-bit Delphi. To this end, we’ll
develop two sample applications to explore
the new features of WinSock 2.

This article concentrates on the issues of
transport protocols and protocol-independent
name resolution, with a demonstration appli-
cation named TowerOfBabel. In the next arti-
cle, we’ll use threads to create a fast, simple
file-transfer application using overlapped I/O
with scatter and gather.

Before using the sample code, you need to
upgrade to WinSock 2 if you’re running
Windows 95. If you aren’t sure which version
of WinSock you have, just run the
TowerOfBabel application; it will inform you if
WinSock 2 isn’t on your system. If the program
can’t find WinSock 2, download the upgrade
from the Internet (see the “Resources” section
at the end of this article). Users of Windows
NT 4.0 don’t need to perform this check; the
operating system has WinSock 2 embedded.

WinSock 2 Speaks Esperanto
With WinSock 1.1 the WinSock DLL comes
with a proprietary transport protocol stack.
Since WinSock 2 must handle transport pro-
tocols other than TCP/IP (e.g. DecNet and
Novell’s NDS), the WinSock Group changed
the WinSock architecture to support multiple
transport protocols. The new architecture fol-

 1: The Windows Open System Architecture (WOSA).

PWSAPROTOCOL_INFOA = ^TWSAPROTOCOL_INFOA;
TWSAPROTOCOL_INFOA = packed record

dwServiceFlags1 : DWORD;
dwServiceFlags2 : DWORD;
dwServiceFlags3 : DWORD;
dwServiceFlags4 : DWORD;
dwProviderFlags : DWORD;
ProviderId : TGUID;
dwCatalogEntryId : DWORD;
ProtocolChain : TWSAPROTOCOLCHAIN;
iVersion : u_int;
iAddressFamily : u_int;
iMaxSockAddr : u_int;
iMinSockAddr : u_int;
iSocketType : u_int;
iProtocol : u_int;
iProtocolMaxOffset : u_int;
iNetworkByteOrder : u_int;
iSecurityScheme : u_int;
dwMessageSize : DWORD;
dwProviderReserved : DWORD;
szProtocol: array [0..WSAPROTOCOL_LEN+1-1] of u_char;

end;

Figure 2: Type declaration of the PWSAPROTOCOL_INFOA record.

On the Cover
lows the Windows Open System Architecture (WOSA)
model shown in Figure 1.

So, instead of having a different WinSock DLL for each
transport protocol stack, one WinSock 2 DLL handles
different transport protocols from different vendors
transparently. Of course, you could have more than one
implementation of a WinSock 1.1 DLL to handle differ-
ent transport protocols simultaneously, but rarely do the
different implementations peacefully coexist. WinSock 2
uses a transport Service Provider Interface (SPI) to
simultaneously manage different transport protocols. A
transport SPI provides a gateway between WinSock 2
and the protocol stacks.

The architecture also provides a name space SPI for
WinSock 2 to manage different name-resolution
schemes that are protocol independent. A Name Space
Provider provides a name resolution scheme, such as DNS.

A WinSock 2 application can use the WSAEnumProtocols API
function to determine the availability of transport protocols.
For example, a server advertises the protocols that are avail-
able, and listens on all transport protocols for any clients. A
Novell-based client using IPX/SPX protocol can connect to
any server that can use IPX/SPX. The benefit is that we don’t
need to modify the client application to make use of a service
that is based on a different transport protocol from the client’s.
This protocol independence is one of WinSock 2’s strengths.

A WinSock 2 program can also seamlessly use different
host-name resolution systems, such as DNS, NIS, X.500,
SAP, etc. This is known as Protocol Independent Name
Resolution. We can determine what name resolution sys-
tems are available to a WinSock 2 application by executing
the WSAEnumNameSpaceProviders API function.

Using WSAEnumProtocols
Our sample application, named TowerOfBabel, demon-
strates the WSAEnumProtocols API function. We use this
API function to detect any transport protocols present on
the machine. (The entire program is available for down-
load; see end of article for details.) We define the
WSAEnumProtocols API in WINSOCK2.PAS, the WinSock
2 interface unit, like this:

function WSAEnumProtocols(lpiProtocols: PInt;
lpProtocolBuffer: PWSAPROTOCOL_INFOA;
lpdwBufferLength: PDWORD): u_int; stdcall;

Note that WSAEnumProtocols, like its siblings in the WinSock
2 interface unit, has the stdcall directive at its tail. This is a
calling convention we must use for APIs written in a different
language. In this case, the WS2_32 DLL is written in C.

The lpiProtocols parameter is a null-terminated array of proto-
col values. When we want WSAEnumProtocols to find all
available transport protocols on the machine, we set
lpiProtocols to nil. Otherwise, WSAEnumProtocols returns
information on those protocols listed in the lpiProtocols array.

Figure
7 June 1998 Delphi Informant
When the call to WSAEnumProtocols succeeds, the function
fills the second parameter, lpProtocolBuffer, with
PWSAPROTOCOL_INFOA records. Figure 2 shows the
definition of the PWSAPROTOCOL_INFOA packed
record. The last parameter, lpdwBufferLength, defines the
size of the lpProtocolBuffer. In Delphi, we call
WSAEnumProtocols like this:

NoProtocols := WSAEnumProtocols(nil, @Buffer, @BufferSize);

where NoProtocols is the number of all transport protocols
found on the machine.

If WSAEnumProtocols fails, it returns a value of
SOCKET_ERROR, a WinSock constant with a value of -1.
The cause of failure is usually that BufferSize is too small,
which we can remedy by simply increasing its size. In the
TowerOfBabel application, we define BufferSize to be 8192
bytes, which should be enough for most networked PCs.

The WSAEnumProtocols function returns a wealth of infor-
mation for each transport protocol in the Buffer parameter.
Figure 3 shows some of the more interesting details. To

Field Description

dwServiceFlags1 bitmask describing the services
provided by the protocol

dwServiceFlags2 reserved
dwServiceFlags3 reserved
dwServiceFlags4 reserved
dwProviderFlags information regarding how this

protocol should be presented in
the protocol catalog

ProviderId unique global identifier assigned for
the service provider of the protocol

dwCatalogEntryId unique identifier assigned by
WinSock 2 for each
PWSAPROTOCOL_INFOA record

iVersion protocol version identifier
iAddressFamily address family type, e.g. AF_INET
iSocketType socket type, e.g. SOCK_STREAM
iProtocol protocol type, e.g. TCP/IP
iNetworkByteOrder specifies the number as “big-

endian” or “little-endian”
iSecurityScheme indicates type of security scheme

in place, if any
dwMessageSize maximum message size supported

by the protocol
szProtocol string identifying the protocol

Figure 3: This table highlights some of the information returned
by WSAEnumProtocols.

ProtocolCount := 0;
lpProtocol := PWSAProtocol_Info(@Buffer[ProtocolCount]);
Size := SizeOf(lpProtocol^);
while ProtocolCount <= NoProtocols - 1 do begin

with lpProtocol^ do begin
{ Rest of code. }

end;
Inc(ProtocolCount);
Offset := ProtocolCount * Size;
lpProtocol := PWSAProtocol_Info(@Buffer[Offset]);

end;

Figure 4: A portion of the GetProtocols procedure in which
transport protocol data is extracted.

On the Cover

Figure 5: The TowerOfBabel application in the IDE.

with lpProtocol^ do begin
// Create a new entry for a protocol;
// then add the data to the list.
New(WSProtoInfo);
with WSProtoInfo^ do begin

// Copy data into WSProtoInfo's fields
// from the Buffer array.
WSProtoList.Add(WSProtoInfo);

end;
end;

Figure 6: A partial listing of the GetProtocols procedure; set-
ting up a list of WSProtoInfo objects.
extract the data, we need to typecast Buffer as a
PWSAPROTOCOL_INFOA record. As Buffer contains a
zero-based array of PWSAPROTOCOL_INFOA records.
We start with the first one like this:

ProtocolCount := 0;
lpProtocol := PWSAProtocol_Info(@Buffer[ProtocolCount]);

where lpProtocol is a local variable of type
PWSAPROTOCOL_INFOA. We use the ProtocolCount vari-
able to iterate through the list of PWSAPROTOCOL_INFOA
records in the Buffer array. For each transport protocol in Buffer,
we point lpProtocol to the PWSAPROTOCOL_INFOA record.

Figure 4 shows a code fragment from the GetProtocols proce-
dure that uses an offset to access each protocol in the Buffer
array. After extracting the information on a transport proto-
col from lpProtocol we use the new value of Offset to get the
next transport protocol in Buffer.
8 June 1998 Delphi Informant
Putting WSAEnumProtocols to Work
Now that we have a basic understanding of the
WSAEnumProtocols API, let’s examine the TowerOfBabel
application in detail. Figure 5 shows the application at
design time. We use TPageControl to set up two pages,
Protocols and NameSpaces. The Protocols page displays
the information for each transport protocol. The
NameSpaces page displays information on the available
Name Space Providers on a machine, which we discuss
later in this article.

Going back to the Protocols page: We have several
CheckBox and Edit controls, and a single ListBox control.
The ListBox control, lbProtocols, displays the list of names
of transport protocols found by WSAEnumProtocols. As we
click on a transport protocol, the contents of the other
controls change. A TList object is used to synchronize the
contents of the controls.

In the GetProtocols procedure, WSProtoList (a TList
object), stores the details of each transport protocol in
the WSProtoInfo object when we extract the data from
the Buffer array (see Figure 6). The data of the
PWSAPROTOCOL_INFOA record is stored in the
fields of the WSProtoInfo object at the same time.

When we click the name of the transport protocol in the
lbProtocols ListBox, the lbProtocolsClick event handler calls

Figure 7: TowerOfBabel in action; the Protocols page.

On the Cover

BufferSize := PDWORD(ArraySize);
NoNameProviders :=

WSAEnumNameSpaceProviders(@BufferSize, @Buffer);
if NoNameProviders = SOCKET_ERROR then

begin
sbStatusMsg.Panels[0].Text := 'Error : ' + WSAErrorMsg;
ShowMessage(

'Call to WSAEnumNameSpaceProviders failed! ' +
'Try increasing size of buffer.');

Exit;
end;

lpNameSpaceProvider := PWSANAMESPACE_INFO(@Buffer[0]);
Size := SizeOf(lpNameSpaceProvider^);

for NPCount := 0 to NoNameProviders - 1 do begin
with lpNameSpaceProvider^ do begin

{ Rest of code. }
end;

end;

Figure 8: A partial listing of GetNSProviders that extracts data
for a name space provider.
UpdateProtoFields. In UpdateProtoFields, the following
assignment does the synchronization trick:

WSProtoInfo := WSProtoList.Items[lbProtocols.ItemIndex];

The lbProtocols.ItemIndex parameter locates the correct
WSProtoInfo object in the WSProtoList list. The rest of
UpdateProtoFields seeds the controls with fresh data from
WSProtoInfo (see Figure 7).

On the Protocols page, the edProtocolGuid Edit control displays
the GUID string for each transport protocol. We use the
GUIDToString function to convert the protocol’s GUID to a
string. When I started working on this project, I came across an
interesting problem that took me a couple of hours to solve. I had
trouble compiling the TowerOfBabel application because the
Delphi 3 compiler refused to compile the TGUID type as defined
in the copy of the WINSOCK2.PAS I had. Commenting out the
TGUID type declaration in WINSOCK2.PAS forced the com-
piler to use the correct TGUID definition in the System unit,
and the application compiled successfully. The modified
WINSOCK2.PAS is included in this month’s files.

Starting and Ending TowerOfBabel
When we start TowerOfBabel, the application checks for the
existence of WS2_32.DLL. If it isn’t present, the operating sys-
tem (Windows 95 or Windows NT 4.0) displays a dialog box
explaining the problem, and the application dies gracefully.

After locating the DLL, the application’s FormCreate procedure
calls the Start function to interrogate the DLL for its version
number. The version number is 2.2, which is hard-coded as a
constant in TowerOfBabel to which the WS2_32.DLL’s version
number must match. If the DLL’s version number is different,
the Start function returns False, which causes TowerOfBabel to
display an error message, and call Application.Terminate.

If the interrogation of WS2_32.DLL is successful, the
FormCreate procedure creates WSProtoList:

WSProtoList := TList.Create;

Following this list creation, we initialize a special Boolean
flag, WSProtoListFreed, to False. This is a useful device to
ensure that the WSProtoList and its WSProtoInfo objects are
freed when TowerOfBabel terminates to prevent resource
leakage. In the Exit1Click procedure (in the File | Exit option
in the menu), the application checks the state of
WSProtoListFreed. If the flag is False, it calls CleanUpLists to
free the list and its objects before calling the Close procedure.

Using the WSAEnumNameSpaceProviders API
Now we look at another new WinSock 2 feature: protocol-
independent name resolution. When a WinSock client attempts
to connect with a server on the Internet, it must first resolve the
server’s name to an IP address. The Domain Name System
(DNS) is usually the service that a client accesses to perform
host-name resolution on the Internet. However, there are similar
systems, such as Novell’s NDS and X.500 services, that behave
9 June 1998 Delphi Informant
differently from DNS (the details of this are outside the scope of
this article; see “Resources” for more information).

We use WSAEnumNameSpaceProviders to determine the avail-
able name space providers (e.g. DNS) on a networked com-
puter. WinSock 2 provides an interface for each name space
provider — a piece of code that sits behind the WinSock 2
DLL. WinSock 2 defines WSAEnumNameSpaceProviders as:

function WSAEnumNameSpaceProviders(
lpdwBufferLength: PDWORD;
lpnspBuffer: PWSANAMESPACE_INFO): u_int; stdcall;

The WSAEnumNameSpaceProviders API returns the number
of name space providers on the system. From Delphi, we call
the function like this:

NoNameProviders :=
WSAEnumNameSpaceProviders(@BufferSize,@Buffer);

The first parameter, BufferSize, which is a double word pointer,
sets the size of the second parameter, Buffer. Buffer contains the
data required to populate the PWSANAMESPACE_INFOA

Figure 9: TowerOfBabel’s NameSpaces page.

On the Cover
record. Figure 8 shows how the GetNSProviders procedure
extracts the data for a name space provider.

As with all WinSock functions, we must check the value
returned by WSAEnumNameSpaceProviders for errors.
When an error occurs, we must determine the cause of the
error by calling WSAGetLastError. On success,
WSAEnumNameSpaceProviders returns the number of
name space providers found on the machine.

To enumerate the name space providers, we use the same
approach as we did for the protocols. As we loop through the
Buffer data, we typecast it as a PWSANAMESPACE_INFOA
record before extracting the data. We use the same technique
in GetProtocols to get the next name space provider, i.e. we
use an offset. As we extract the details of the name space
provider, we copy the data to the WSNSInfo object in the
WSNSList — another TList object. We use this object to
synchronize the contents in the Edit controls with the
lbNameSpaceProviders ListBox control on the NameSpaces
page. When we click on a name space provider in
lbNameSpaceProviders, the lbNameSpaceProvidersClick event
handler calls UpdateNSPFields to update the contents in
the controls on the NameSpaces page (see Figure 9).

Looking Ahead
We’ve explored two WinSock 2 functions, WSAEnumProtocols
and WSAEnumNameSpaceProviders. Next time, we’ll take a
look at creating a speedy file-transfer application using more of
WinSock 2-specific APIs, including those for overlapped I/O.

Resources
For up-to-date information on WinSock 2, including the
upgrade kit and links to other WinSock 2 sites, point
your browser to http://www.sockets.com/winsock2.htm.
WinSock 2 documentation is available from Intel at
http://www.intel.com/ial/winsock2/specs.htm. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806JP.
10 June 1998 Delphi Informant
John Penman is the owner of Craiglockhart Software, which specializes in pro-
viding Internet and intranet software solutions. John can be reached on the
Internet at jcp@craiglockhart.com.

http://www.sockets.com/winsock2.htm
http://www.intel.com/ial/winsock2/specs.htm

Delphi Import/Export
Part II: Streams and Bit Fiddling

OP Tech
Delphi 1, 2, and 3 / Borland Database Engine

By Bill Todd

procedure TFo
begin

{ Get the d
filePath :=
{ If the pa
if filePath

filePath
{ Add the f
filePath :=
{ Empty the
Memo1.Lines
Memo1.Lines

end;

Figure 1: The
into the Memo

11 June 1998 Delphi Informant
In the first article of this two-part series, we looked at various ways of
accessing data, including using the BDE ASCII driver and Delphi’s I/O

routines. In this article, we’ll continue to explore techniques for accessing
data more effectively, including using FileStream objects and bitwise operators.
r

[

.
.

L

Working with Objects that Use Files
In Part I, we saw the rich set of features that
Pascal provides to work with files. It’s time to
point out that we frequently don’t need to
write file-access code in Delphi. Why? All of
the following Delphi objects have built-in
methods (LoadFromFile and SaveToFile) for
reading/writing data from/to files:

TBitmap
TGraphic
TIcon
TMemoryStream
TMetaFile
TPicture
TStringList
TString
m1.OpenBtnClick(Sender: TObject);

irectory path from the file list. }
FileListBox1.Directory;
th does not end with \ add one. }
Length(filePath)] <> '\' then
:= filePath + '\';
ile name to the path. }
filePath + FileListBox1.FileName;
memo and read the file. }
Clear;
LoadFromFile(filePath);

oad Memo button’s click procedure loads text
component.
The following components also have their
own methods for file I/O:

TOLEContainer
TOutline

However, this list tells only part of the story,
because all of the components that include
any of the previously listed objects also
include their file I/O routines. For example,
the lines in a Memo component are actually a
TStringList object, so you can load the memo
by calling LoadFromFile, and save the memo’s
contents by calling SaveToFile.

The code in Figure 1 is from the
TSTRING.DPR sample project Load Memo

button’s click procedure, and shows how the
text from the file is loaded into the Memo
component on the form. This is the same code
you saw last month in the discussion of text-
file processing, except for the last line, which
calls the LoadFromFile method of the memo’s
Lines property to read the contents of the text
file into the memo. The following code is from
the Save Memo button’s click procedure:

procedure TForm1.SaveBtnClick(Sender:
TObject);

begin
Memo1.Lines.SaveToFile(filePath);

end;

procedure TForm1.UpperBtnClick(Sender: TObject);
var
UpList: TStringList;
i: Word;

begin
UpList := TStringList.Create;
UpList.LoadFromFile('upper.txt');
for i := 0 to UpList.Count - 1 do

UpList[i] := UpperCase(UpList[i]);
UpList.Sorted := True;
UpList.SaveToFile('upper.txt');
UpList.Free;

end;

Figure 2: The OnClick event handler for a button in UPPER.DPR.

OP Tech

procedure TStreamForm.ReadBtnClick(Sender: TObject);
var
Stream: TFileStream;
Buff: array[0..31] of Char;
Count: Longint;

begin
{ Create a file stream. }
Stream := TFileStream.Create('stream.bin',
fmOpenReadWrite);
try
{ Read some bytes from the stream. }
Count := Stream.Read(Buff, 26);
{ Put a null at the end of the buffer so you can treat

it as a null-terminated string. }
Buff[Count] := #0;
{ Display what you have read. }
ShowBuff(Buff, Count, Stream.Position);

finally
Stream.Free;

end;
end;

Figure 3: This OnClick event handler creates and reads from a
FileStream object.
Here, a call to the SaveToFile method saves the contents of
the memo. You can see these methods in action by running
the program (see end of article for download details), opening
a text file, making some changes, and saving the file. The
same technique works with TList and TComboBox compo-
nents. The following code is from the Load List button’s
OnClick event handler:

procedure TForm1.LoadBtnClick(Sender: TObject);
begin
ListBox1.Items.LoadFromFile('months.txt');

end;

You can also perform this same type of string manipulation in
your code behind the scenes, using TStringList objects. The
code in Figure 2 is from the OnClick event handler for the
button in the project UPPER.DPR. This code declares an
instance of TStringList called UpList, and begins by calling its
constructor in the statement:

UpList := TStringList.Create;

Next, the code loads the contents of the text file
UPPER.TXT into the string list, then uses a for loop to iter-
ate through the list and convert each string in the list to
upper case. The statement:

UpList.Sorted := True;

sets the string list’s Sorted property to True, which causes
the string list to sort itself. The call to SaveToFile saves the
upper-case text back to UPPER.TXT. The last statement
in this code:

UpList.Free;

is perhaps the most important. Remember that when you’re
done with the object, you must always call an object’s destruc-
tor to release the memory it uses. Notice that the for loop uses
the string list’s Count property to determine the number of
strings in the list and access each string like an element in an
array. Because the first string in a string list always has an
index of zero, the last string’s index is always Count - 1.

Using FileStream Objects
FileStream objects let you read and write binary data. The
FileStream methods don’t know or care what the data is; they
12 June 1998 Delphi Informant
simply let you transfer a stream of bytes between a buffer area
in memory and a disk file. You can specify the number of
bytes to transfer and the location in the file where the transfer
will begin. The STREAM.DPR project, available for down-
load, demonstrates the use of FileStreams.

The code in Figure 3, from the Read Stream button’s OnClick
event handler, shows how to create and read from a
FileStream object. This routine begins by declaring an
instance variable, Stream, of type TFileStream. A character
array, Buff, serves as the memory buffer into which the data
read from the stream will be placed; the Count variable is used
to hold the number of bytes actually read by the stream. The
statement:

Stream := TFileStream.Create('stream.bin',fmOpenReadWrite);

calls the stream’s constructor method, Create, to create an
instance of the FileStream object. The Create method takes
two parameters; the first is the name of the file and the sec-
ond is the file mode. For a list of the file modes, search for
TFileStream in Delphi’s online Help, click Methods to display
the list of methods, then select Create.

The call to the Read method takes two parameters. The first is
the buffer into which the data read from the stream will be
placed; the second is the number of bytes to read. The Read
method returns the number of bytes actually read from the
stream. If the number of bytes read is less than the number of
bytes requested, you’ve reached the end of the file.

In this example, the file you are reading, STREAM.BIN, con-
tains the lower-case letters “a” through “z.” The statement:

Buff[Count] := #0;

puts a null character into the buffer after the last byte
read. This lets the ShowBuff method that displays the con-
tents of the buffer in the Memo component on the form

procedure TStreamForm.ShowBuff(const Buff: array of Char;
Count, CurrentPos: Longint);

var
I: Integer;

begin
with Memo1 do begin
{ Convert the buffer from a null-terminated string to

a Pascal string and assign it to the first line of
the memo. }

Lines[0] := StrPas(Buff);
{ Show the number of bytes read and the current

position of the stream. }
Lines.Add('Bytes Read = ' + IntToStr(Count));
Lines.Add('Stream Position = ' + IntToStr(CurrentPos));

end;
end;

Figure 4: The ShowBuff method.

procedure TStreamForm.WriteBtnClick(Sender: TObject);
var

InStream,
OutStream: TFileStream;
Buff: array[0..31] of Char;
Count: Longint;

begin
{ Create the input file stream. }
InStream := TFileStream.Create('stream.bin', fmOpenRead);
{ Create the output file stream. }
OutStream := TFileStream.Create('stream.out', fmCreate);
try

{ Move the stream pointer to the location where you
want to begin reading. }

InStream.Seek(10, 0);
{ Read some bytes from the stream. }
Count := InStream.Read(Buff, 5);
{ Put a null at the end of the buffer so you can treat

it as a null-terminated string. }
Buff[Count] := #0;
{ Display what you have read. }
ShowBuff(Buff, Count, InStream.Position);
{ Write contents of buffer to the output stream. }
OutStream.Write(Buff, Count);

finally
InStream.Free;
OutStream.Free;

end;
end;

Figure 5: The OnClick event handler for the Write Stream button.

OP Tech
treat the buffer as a null-terminated string. The ShowBuff
method, shown in Figure 4, copies the contents of the
buffer array to the first line of the Memo, then displays
the number of bytes read, and the position of the stream
after the read.

The code from the Read From Middle button’s OnClick event
handler is identical to the code from the Read Stream button,
except for the call to the FileStream’s Seek method to set the
position of the Stream to the eleventh byte before reading five
bytes into the buffer:

Stream.Seek(10, 0);

In the call to Seek, the first parameter is the position you
want to set the FileStream to; the second parameter identi-
fies the starting point (or origin). There are three possibili-
ties: If the origin is zero, the position is relative to the
13 June 1998 Delphi Informant
beginning of the file; if it’s 1, the position is relative to the
current position; if it’s 2, the position is relative to the end
of the file. Note that the position can be a negative number,
if you wish to move backward.

The code from the Write Stream button’s OnClick event han-
dler copies five bytes from one FileStream to another and is
shown in Figure 5. Again, this code is similar to that you’ve
seen. This time, however, the method opens a stream for
reading, and creates a new file for output. It reads five bytes
into the buffer, and writes those five bytes to the output
stream with the call to the Write method:

OutStream.Write(Buff, Count);

The Write method takes the buffer and the number of charac-
ters to write as parameters. At the end of each of the OnClick
event handlers, the i objects are destroyed by calling the
destructor method, Free. This closes the file and releases the
memory used by the FileStream object.

Fiddling with Bits
So far, this series has dealt mainly with ASCII files as exam-
ples. If you need to work with other types of files, the
untyped file routines (BlockRead and BlockWrite) and file
streams will let you read and write any file, regardless of what
it contains. However, once you have read the byte stream
from a file, you may need to perform some manipulation of
the data before you can use it. For example, you may
encounter a mainframe file that contains numbers in sign,
overpunched format, or COBOL Comp format. Before you
can use these numbers, you will have to convert them to a
format that Delphi understands; this means accessing the val-
ues from the file at the bit level.

Fortunately, Pascal includes a complete set of bitwise oper-
ators for working with integers; you can access values on a
bit-by-bit basis, or work with groups of bits. The bitwise
operators are and, or, xor, not, shl, and shr. The two
you’re likely to find most useful for converting data from a
foreign format to something Delphi can understand are
and and shr. The and operator lets you determine the
value of a bit, which effectively lets you extract the value
of any bit, or combination of bits.

Working with the bitwise operators involves two values:
the value you wish to operate on and a mask value. The
truth table in Figure 6 shows the effect of the and opera-
tor. The most important rows in this table are the second
and third. Note that if the value of the mask is 1, the
result is always equal to the value you and it with. This
means you can extract the value of any bit or combination
of bits using the and operator and a mask value that has
those bits set to 1.

The truth table in Figure 7 shows how the bitwise or
operator works. Again, the significant rows are the second
and third. If the bit is on in the mask value, it will be on
in the result.

Value Mask Result

0 0 0
0 1 0
1 1 1
1 0 0

Figure 6: Truth table for the bitwise
and operator.

Value Mask Result

0 0 0
0 1 1
1 1 1
1 0 1

Figure 7: Truth table for the bitwise
or operator.

Value Mask Result

0 0 0
1 0 1
1 1 0
0 1 1

Figure 8: Truth table for the bitwise
xor operator.

OP Tech
The xor bitwise operator toggles the state of the bits set in
the mask in the third and fourth rows (see Figure 8).

The last two bitwise operators, shl and shr, shift the bits in
the value to the left and right, respectively. Using them, you
can modify the values you are working with on a bit-by-bit
basis as necessary to convert the data from one format to
another.

ODBC Drivers
If you need to import data from, or export data to, complex
formats that aren’t directly supported either by the BDE or
Pascal’s file I/O features, look for an ODBC driver. ODBC
drivers are available for most common file formats and pro-
vide an easy alternative to learning how to read or write a
complex file structure.

Conclusion
The BDE and Object Pascal have a variety of tools you can
use to get data into, or out of, your programs in the format
you need. For complex file formats, ODBC drivers offer an
easy alternative. In addition, third-party DLLs are available
for importing and exporting many formats. As we’ve seen in
this two-part series, there are many options to help us meet
our import/export needs. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806BT.

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database pro-
gramming books, including Delphi: A Developer’s Guide [M&T Books, 1995]
and Creating Paradox for Windows Applications [New Riders Publishing, 1994].
He is contributing editor of Delphi Informant, a member of Team Borland pro-
viding technical support on the Borland newsgroups, and has been a speaker at
every Borland Developers Conference. He can be reached at BillTodd@compu-
serve.com or (602) 802-0178.
14 June 1998 Delphi Informant

Tough Decisions
Building Delphi Decision Trees

Algorithms
Delphi 1, 2, 3 / Algorithms

By Rod Stephens

Figure 1: An investment decisio

15 June 1998 Delphi Informant
When you strip away the glitz and flash, the multi-media and virtual reality,
computers are decision-making tools. We use them to visualize situa-

tions, analyze the expected results of different decisions, and from that, pick a
course of action.
Many decisions have so many consequences,
however, that analyzing them all can be hard,
even for a computer. For example, suppose
you have US$100 million to spend on one or
more of 100 different investments. You want
to pick a selection of investments that maxi-
mizes your expected profit but costs no more
than the money you have to spend. Any
given investment will either be in the solu-
tion you chose, or it won’t. The two possibili-
ties for each investment combine to make the
total number of possible combinations of
investments 2100, or more than 130. You must
select the most profitable of all these options.
Even if your computer could examine one
million of these combinations per second, it
would take you more than 4 x 1016 years to
explore them all — more than two million
times the age of the universe.
n tree.
This article explains decision trees, data
structures you can use to model these types
of difficult decisions, and how to imple-
ment them in Delphi. It also explains sev-
eral ways you can search even the largest
decision trees.

Decision Trees
You can model tough decisions, like the invest-
ment example, using decision trees. Each node
in the tree represents a partial decision. In this
example, it represents the decision to spend
money on an investment or not. The branches
coming out of the node represent the different
possible choices for the partial decision. For
example, the left branch extending out of the
top node might correspond to spending
money on the first investment option. The
right branch would correspond to not invest-
ing in that option. Figure 1 shows a small
investment decision tree. This tree involves
only three investment options, so there are
only 23 (or eight) possible combinations at the
bottom of the tree.

Finding the best solution to the original
problem corresponds to finding the best path
through the decision tree — from its root at
the top, to a leaf at the bottom. The defini-
tion of “best path” depends on the particular
problem. For this investment example, the
path must not include more nodes than can
fit within the $100 million spending limit.
The “best path” is the one that reaches a leaf
with the greatest possible profit.

Algorithms
Exhaustive Search
One way to search for the best path is to visit every node in
the tree. Each time the program reaches a leaf node at the
bottom of the tree, it evaluates the cost and profit of the
investment package represented by the node. If the cost is no
greater than $100 million, and the profit is greater than the
best profit found so far, the program records this package as
the best solution at that point. After examining the entire
tree, the program knows which combination is best. This
method is called exhaustive search because the program
exhaustively examines every node in the tree.

The demonstration program, Decide, stores investment costs
and profits in the Cost and Profit arrays. (Decide is available
for download; see end of article for details.) It uses the
Boolean array TestUse to indicate whether an investment
opportunity is included in a test solution. For example,
TestUse[10] is True if investment 10 is part of the test solu-
tion. The value BestProfit records the profit of the best solu-
tion found so far, and the Boolean array BestUse indicates the
investment options included in the best solution.

The SearchExhaustively procedure (shown in Figure 2), takes
as a parameter the index of the test investment it should con-
sider. It assumes the earlier investments have already been
fixed. For example, when the argument value is 12, invest-
ments 1 through 11 have already been added or excluded
from the test solution.
16 June 1998 Delphi Informant
The procedure first adds the test investment to the test solu-
tion and recursively calls itself to examine the other invest-
ment options. It then removes the test investment from the
test solution and again recursively calls itself to evaluate other
options. As it makes these calls, it updates the test solution’s
cost and profit accordingly.

At some point during the recursive process, the procedure is
called with a test investment index greater than the available
number of options. At that point, all the investments have
been assigned either in or out of the test solution, and the
procedure is at a leaf node in the decision tree. The procedure
examines the test solution’s cost and profit. If the cost is with-
in the spending limit, and the profit is better than the best
profit found so far, the routine updates the BestProfit and
BestUse values to save this solution.

Branch and Bound
For simple problems, exhaustive search is adequate.
Unfortunately, many useful decision trees are extremely large.
If you really had $100 million to invest, all sorts of people
would probably appear to give you dozens, if not hundreds,
of investment suggestions. The corresponding decision tree
would be enormous.

The problem with exhaustive search is that it visits every node
in the tree, even though many can’t possibly represent good
solutions. For example, the left-most node represents a solution
that includes every investment. This would almost surely cost
more than the spending allowance. The right-most node corre-
sponds to a solution including no investments. Adding any
investment to this solution will increase total profit. These are
extreme examples, but decision trees generally contain many
nodes that represent solutions that are obviously bad.

A technique called Branch and Bound can help you trim
many of these obviously bad choices from the tree. The algo-
rithm searches the tree recursively, much as exhaustive search
does. As it progresses, it keeps track of the current cost of the
test solution. If it ever reaches a point where the cost of the
test solution exceeds the spending allowance, the algorithm
stops examining that solution.

For example, suppose in a 20-investment problem, the
program has assigned the first 10 options in and out of the
test solution. If the total cost of the items already placed in
the test solution is greater than the allowance, the algo-
rithm stops examining this solution. There’s no reason to
consider the remaining 10 items because the cost of the
solution can only increase.

This test allows the algorithm to prune branches that are
too expensive. Branch and Bound uses another test to
exclude branches that don’t produce enough profit. As the
algorithm progresses, it keeps track of the total profit not
yet committed by the algorithm. If the profit given by the
test solution so far, plus this uncommitted profit, is no
greater than the profit of the best solution found so far, the
algorithm discards the solution.
procedure TDecideForm.SearchExhaustively(
test_item: Integer);

var
i : Integer;

begin
// If we have assigned every item, see if we have
// found an improved solution.
if (test_item > NumChoices) then

begin
if ((TestCost <= CostAvailable) and

(TestProfit > BestProfit)) then
begin
// Save the improved solution.
for i := 1 to NumChoices do
BestUse[i] := TestUse[i];

BestProfit := TestProfit;
end;

Exit;
end;

// Add test_item to the test solution.
TestUse[test_item] := True;
TestCost := TestCost + Cost[test_item];
TestProfit := TestProfit + Profit[test_item];

// Recursively see what we can find.
SearchExhaustively(test_item + 1);

// Take test_item back out of the test solution.
TestUse[test_item] := False;
TestCost := TestCost - Cost[test_item];
TestProfit := TestProfit - Profit[test_item];

// Recursively see what solution we can find
// without test_item in the solution.
SearchExhaustively(test_item + 1);

end;

Figure 2: Searching a decision tree exhaustively.

Algorithms

F

For example, suppose in a 20-investment problem that the pro-
gram has assigned the first 10 options, and the profit of the test
solution so far is $5 million. Suppose the remaining 10 items
have a combined profit of $10 million. If the program has
already found a solution worth $16 million, it can stop work-
ing on this test solution. Even if it added all the remaining
investments to the package, it could increase the total profit to
only $15 million — not enough to beat the current best.

These tests have the added benefit that any time the algo-
rithm reaches a leaf node, the test solution is certain to be
better than the best solution found so far. Otherwise, the leaf
node would have been trimmed off in the previous step when
the last investment was added to the test solution and the
remaining profit was reduced to zero. The fact that leaf nodes
are always improvements simplifies the algorithm. Figure 3
shows the Delphi source code for Branch and Bound.

Decide reports on the number of decision tree nodes visited by
each of its algorithms. While exhaustive search visits all 2N+1

nodes in an N investment decision tree, Branch and Bound vis-
its far fewer. In one test with 25 investments, exhaustive search
visited more than 67 million nodes; Branch and Bound visited
17 June 1998 Delphi Informant
only 1,453. The exact number of nodes visited depends on the
specific costs, profits, and spending allowance.

Hill Climbing
For some problems, however, even Branch and Bound isn’t
fast enough. In that case, you can still use a heuristic to find
an approximate solution to the problem. A heuristic is an
algorithm that should produce a good solution, but is not
guaranteed to find the best solution.

Different heuristics have differing amounts of success for dif-
ferent problems. One common type of heuristic is a hill-
climbing algorithm. The idea is for the algorithm to make
choices that always move the program closer to its goal. It’s
called hill climbing because it’s similar to one way a lost hiker
can try to find the top of a mountain at night. Even in the
dark, the hiker can always move uphill, closer to the goal.
Naturally, the hiker might come to the top of a smaller hill and
be unable to find the top of the mountain. That can be a prob-
lem with hill climbing heuristics as well. The algorithm may
come to a local maximum that isn’t the best possible solution.

In the investment example, the hill-climbing heuristic consid-
ers all the remaining investment options, and picks one that
fits within the remaining cost allowance and has the largest
profit. If all the options have roughly the same cost, the algo-
rithm will simply pick those that have the largest profits. If the
costs are identical, this will give the best possible solution. If
the costs are different, the algorithm may sometimes pick an
procedure TDecideForm.BranchAndBound(test_item : Integer);
var
i : Integer;

begin
// If we've reached a leaf node, we know
// this solution is an improvement.
if (test_item > NumChoices) then

begin
for i := 1 to NumChoices do
BestUse[i] := TestUse[i];

BestProfit := TestProfit;
Exit;

end;

// Try to add test_item to the test solution.
if ((TestCost + Cost[test_item] <= CostAvailable) and

(TestProfit + UnusedProfit > BestProfit)) then
begin
// Add it.
TestUse[test_item] := True;
TestCost := TestCost + Cost[test_item];
TestProfit := TestProfit + Profit[test_item];
UnusedProfit := UnusedProfit - Profit[test_item];

// Recursively test this solution.
BranchAndBound(test_item + 1);

// Take the item back out of the solution.
TestUse[test_item] := False;
TestCost := TestCost - Cost[test_item];
TestProfit := TestProfit - Profit[test_item];
UnusedProfit := UnusedProfit + Profit[test_item];

end;

// Try a solution without test_item.
if (TestProfit + UnusedProfit -

Profit[test_item] > BestProfit) then
begin
UnusedProfit := UnusedProfit - Profit[test_item];
BranchAndBound(test_item + 1);
UnusedProfit := UnusedProfit + Profit[test_item];

end;
end;

igure 3: Searching a decision tree with Branch and Bound.
procedure TDecideForm.HillClimbing;
var
unspent, best_i, best_profit, i : Integer;

begin
unspent := CostAvailable;

// Repeatedly look for an item to add to the solution.
while (True) do begin
// Find the item with largest profit that fits
// the solution.
best_profit := -1;
best_i := -1;
for i := 1 to NumChoices do begin
// If the item has not yet been used, and if
// we have the funds to afford it, and if it
// gives better profit, take it.
if ((not BestUse[i]) and

(Cost[i] <= unspent) and
(Profit[i] > best_profit)) then

begin
best_i := i;
best_profit := Profit[i];

end;
end;

// If best_i < 0, no more items will fit
// in the solution so we're done.
if (best_i < 0) then

Exit;

// Add the item found to the solution.
BestUse[best_i] := True;
BestProfit := BestProfit + best_profit;
unspent := unspent - Cost[best_i];

end;
end;

Figure 4: Searching a decision tree with a hill-climbing heuristic.

Algorithms

Figure 6: The Decide program after finding a solution using
Branch and Bound.
expensive option with a high profit, when it might be better to
pick two cheaper options with a greater combined profit.

Figure 4 shows the hill-climbing heuristic used by Decide.
The algorithm repeatedly looks through the unused invest-
ment choices to find the one with the highest profit that costs
no more than the remaining spending allowance. When no
more items fit into the solution, the heuristic is done.

Random Search
Exhaustive search is slow because it examines every node in
the decision tree. Branch and Bound trims the number of
nodes visited, but it still visits a substantial fraction of the
18 June 1998 Delphi Informant
nodes. For an N-item investment problem, hill climbing must
make, at most, N selections. That makes it extremely fast for
even the largest problems. Unfortunately, that also means the
heuristic examines only one of the huge number of possible
solutions; the chances of it finding the best solution possible
are extremely small.

Another heuristic that sometimes works better than hill climb-
ing is a random heuristic. The program simply picks several
solutions at random, recording the best it finds. Each trial has
only a small chance of finding a good solution. In fact, chances
are, the hill-climbing heuristic will produce a better solution
than a random one. However, hill climbing produces a single
solution and then stops. A random heuristic can select many
random solutions until it obtains a reasonable result. Figure 5
shows the source code for the random heuristic used by Decide.

Caveat implementor: The functions described in this article are
recursive in nature, and there’s no message processing occurring
during their execution. This maximizes the CPU’s time, but also
means Windows cannot preempt them, i.e. on large problems,
the machine may appear to lock up, and you may be unable
to halt processing — even with CAD. Real-world appli-
cation of these algorithms should either include Windows mes-
saging, limit the size of the calculations, or both.

Conclusion
The Decide program demonstrates exhaustive, Branch and
Bound, hill climbing, and random search (see Figure 6).
Experiment with it to see how performance changes with
different input values. You will notice, for example, that
Branch and Bound may examine more nodes if you
increase the spending allowance.

Many other heuristics are possible for the investment problem.
Some select items with small costs instead of large profits.
Others make random selections, then swap items in and out of
the solution, trying to make improvements. Using the code in
Decide as a starting point, try making a few heuristics of your
own. With experience, you can build algorithms that produce
reasonable solutions for even the largest problems. Perhaps
some day you’ll win the lottery and have a chance to put your
heuristics to practical use. ∆
procedure TDecideForm.SearchRandomly;
const
NUM_TRIALS = 1000;

var
trial, unspent, num_items, num, i : Integer;

begin
// Attempt NUM_TRAILS * NumChoices trials.
for trial := 1 to NUM_TRIALS * NumChoices do begin
unspent := CostAvailable;

// Add randomly selected items to the solution
// until no more will fit.
while (True) do begin
// See how many items can fit in the solution.
num_items := 0;
for i := 1 to NumChoices do
if ((not TestUse[i]) and

(Cost[i] <= unspent)) then
num_items := num_items + 1;

// See if no more fit.
if (num_items < 1) then
Break;

// Pick an item randomly.
num := Trunc(Random(num_items)) + 1;
// Find the item.
for i := 1 to NumChoices do
if ((not TestUse[i]) and

(Cost[i] <= unspent)) then
begin
num := num - 1;
if (num < 1) then
Break;

end;
// Select it.
TestUse[i] := True;
unspent := unspent - Cost[i];
TestProfit := TestProfit + Profit[i];

end;

// We have finished creating the random solution.
// See if it is an improvement.
if (TestProfit > BestProfit) then

begin
for i := 1 to NumChoices do begin
for i := 1 to NumChoices do
BestUse[i] := TestUse[i];

BestProfit := TestProfit;
end;

end; // End saving improved solution.

// Reset the test solution for the next trial.
TestProfit := 0;
TestCost := 0;
for i := 1 to NumChoices do
TestUse[i] := False;

end; // End of this trial.
end;

Figure 5: Searching a decision tree using a random heuristic.

Algorithms
The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806RS.

Rod Stephens has written several books, including Custom Controls Library
[John Wiley & Sons, Inc., 1998] and Visual Basic Graphics Programming [John
Wiley & Sons, Inc., 1996]. His book Visual Basic Algorithms [John Wiley &
Sons, Inc., 1998] explains dozens of algorithms like these. Visit his Web site at
http://www.vb-helper.com, or contact him at RodStephens@vb-helper.com.
19 June 1998 Delphi Informant

http://www.vb-helper.com

20 June 1998 Delphi Informant

Run-time Type Information
An Introduction to Delphi’s Undocumented RTTI

DBNavigator
Delphi 3 / RTTI

By Cary Jensen, Ph.D.
This article provides an introduction to run-time type information (RTTI), which
is information the Delphi compiler stores in the code segment of your com-

piled project. This information is associated with published properties of a class,
and it provides a mechanism for treating the symbolic information associated
with your types as strings. One example of how RTTI impacts your everyday use
of Delphi is the Object Inspector. The Object Inspector displays the names of
published properties. This information is retrieved using RTTI.
Delphi ships with a unit, named typinfo.pas,
that contains the RTTI functions and proce-
dures, as well as type declarations used by
these functions. By adding this unit to your
unit’s uses clause, you can call these functions
to access RTTI. At a minimum, you should
consider taking a look at the typinfo.pas file
in Delphi’s\Source\VCL directory.

This article demonstrates several uses of
RTTI. One note of caution is in order, how-
ever. Borland has specifically not document-
ed the typinfo unit, and reserves the right to
change it in any new release of Delphi. It is
essential that Borland maintain this right,
since the RTTI features are critical to the
operation of Delphi itself. As a result, it’s
possible that if you use RTTI in your appli-
cation, subsequent changes to the typinfo
unit in a new version of Delphi will require
you to make modifications to your programs
if you want to recompile them under the
new version.

Getting RTTI for Enumerated Types
Enumerated types are used throughout
Delphi. An example of this is the
TCommonAvi enumerated type, which
declares the valid values for the CommonAVI
property of an Animate control. The follow-
ing is the TCommonAvi declaration from
Delphi 3’s comctrls unit:
type TCommonAVI = (aviNone, aviFindFolder,
aviFindFile,

aviFindComputer, aviCopyFiles, aviCopyFile,
aviRecycleFile, aviEmptyRecycle,
aviDeleteFile);

RTTI permits you to do two things with
enumerated types. You can retrieve strings
that contain the name of each value in the
enumerated type, and you can identify the
ordinal position within the enumerated type
of one of its valid values using a string repre-
sentation of the value.

You obtain a string equivalent of an enu-
merated type value using the GetEnumName
function:

function GetEnumName(TypeInfo: PTypeInfo;
Value: Integer): string;

The first argument is a pointer to the enu-
merated type’s RTTI information, and the
second argument is the ordinal position of
the value within the enumerated type.
GetEnumName returns a string representing
the corresponding enumerated type value.

You get the ordinal position of an enumerated
type value based on a string using the
GetEnumValue function:

function GetEnumValue(TypeInfo: PTypeInfo;
const Name: string): Integer;

procedure TForm1.FormCreate(Sender: TObject);
var
ca: TCommonAvi;

begin
// For each value of the TCommonAVI enumerated type.
for ca := Low(TCommonAvi) to High(TCommonAvi) do
// Get string equivalent of the enumerated type value.
ComboBox1.Items.Add(GetEnumName(TypeInfo(TCommonAvi),

Ord(ca)));
// Initialize ComboBox to the first item in the list.
ComboBox1.ItemIndex := 0;

end;

Figure 2: The ComboBox is loaded dynamically from RTTI using
the GetEnumName function from within the form’s OnCreate
event handler.

1: The TCommonAVI values displayed in the ComboBox are
red at run time using RTTI.

DBNavigator

procedure TForm1.ComboBox1Change(Sender: TObject);
var

ValueOrd: Integer;
begin
if Animate1.Active then

begin
Button1.Caption := '&Start';
Animate1.Stop;

end;
// Get the ordinal position of the value associated
// with the selected string in the ComboBox.
ValueOrd := GetEnumValue(TypeInfo(TCommonAvi),

ComboBox1.Items[ComboBox1.ItemIndex]);
// Cast this ordinal value to the TCommonAVI type.
Animate1.CommonAVI := TCommonAVI(ValueOrd);

end;

Figure 3: Assigning a value to the Animate component’s
CommonAVI property using the ComboBox’s OnChange
event handler.
Like GetEnumName, the first argument is a pointer to
the RTTI information. The second argument is a string
that represents the enumerated type value. This function
returns the ordinal position of the corresponding value.

The relationship between these two function calls is
demonstrated with the following code segment:

var
s: string;
i: Integer;

begin
s := GetEnumName(TypeInfo(TCommonAvi),3);
// Displays aviFindComputer.
ShowMessage(s);
i := GetEnumValue(TypeInfo(TCommonAvi),s);
// Displays 3.
ShowMessage(IntToStr(i));

As mentioned, these functions require a pointer to
the RTTI for an enumerated type. Since the pointer for a
particular type may change from one version of Delphi to
another, you must use the TypeInfo function to retrieve this
information. TypeInfo takes a single argument, the type of the
enumerated type whose RTTI pointer you want to return:

function TypeInfo(TypeIdent): Pointer;

The use of these functions is demonstrated in the ANIMATE
project, which also demonstrates the use of the Animate com-
ponent from the Win32 page of the Component palette. (This
project, and the other demonstration projects discussed in this
article, are available on disk and for download; see end of arti-
cle for details.) Figure 1 shows the main form of this project as
it might appear while running. There’s a ComboBox that lists
the various valid values for the TAnimate.CommonAVI proper-
ty. In most applications, you would have populated this
ComboBox using its Items property at design time.

In this project however, the ComboBox is loaded dynamically
from RTTI using the GetEnumName function from within the
form’s OnCreate event handler (see Figure 2). A for loop iter-
ates through the TCommonAvi enumerated type. For each
ordinal position, the GetEnumName function is called, and the
returned value is added to the ComboBox’s Items property.

RTTI is used again to assign the value selected in the
ComboBox to the Animate’s CommonAVI property. This is
performed from the ComboBox’s OnChange event handler,
shown in Figure 3. This code includes an additional step for
the purpose of clarity. Specifically, the value returned by
GetEnumValue is assigned to an intermediate variable named
ValueOrd. This variable is then cast as a TCommonAVI type.
Instead of using the variable ValueOrd, the value returned by
the GetEnumValue could have been cast directly, permitting
these two steps to be represented by a single statement.

Getting Object Property Listings
As you learned earlier, it’s possible to get the names of pub-
lished properties using RTTI. This is done by populating a
PPropList using a call to GetPropList:

Figure
discove
21 June 1998 Delphi Informant
function GetPropList(TypeInfo: PTypeInfo;
TypeKinds: TTypeKinds; PropList: PPropList): Integer;

A PPropList is an array of TPropInfo records, and each record
holds information about a particular property. This record
includes fields such as Name and PropType. The first argu-
ment is the TypeInfo. Unlike GetEnumName, for which you
must use TypeInfo, there is a second, alternative way to get the
PTypeInfo argument. Since this function is used on objects,
you can use the ClassInfo property as this first argument. The
second argument is a set of the property types. Following is

Figure 4: The names of the published properties of a class
selected in the Controls ComboBox are displayed in a ListBox.
These values are discovered using GetPropList.

DBNavigator

procedure TForm1.ComboBox1Change(Sender: TObject);
var
PropList: PPropList;
i: Integer;
CompName: string;

begin
PropList := AllocMem(SizeOf(PropList^));
i := 0;
CompName := ComboBox1.Items[ComboBox1.ItemIndex];
ListBox1.Items.Clear;
try

GetPropList(FindComponent(CompName).ClassInfo,
tkProperties + [tkMethod], PropList);

while (PropList^[i] <> nil) and
(i < High(PropList^)) do begin

ListBox1.Items.Add(PropList^[i].Name);
Inc(i);

end;
finally
FreeMem(PropList);

end;
end;

Figure 5: The ListBox is populated with the property names of the
object selected in the ComboBox. This operation is performed
from the ComboBox component’s OnChange event handler.
the declaration of the TTypeKind enumerated type, which
defines the valid values for this set:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration,
tkFloat, tkString, tkSet, tkClass, tkMethod, tkWChar,
tkLString, tkWString, tkVariant, tkArray, tkRecord,
tkInterface);

This is the TTypeKinds declaration:

TTypeKinds = set of TTypeKind;

Other useful TTypeKind-related declarations in this unit
include the following:

const
tkAny = [Low(TTypeKind)..High(TTypeKind)];
tkMethods = [tkMethod];
tkProperties = tkAny - tkMethods - [tkUnknown];

The third argument of GetPropList is the PPropList that is
populated with the property information. Finally, GetPropList
returns an integer representing the number of properties
returned in the PPropList.

The use of GetPropList is demonstrated in the PROPLIST
project. The main form for this project is shown in Figure 4.
This form includes a ComboBox, whose contents are populat-
ed at run time with the form’s OnCreate event handler with
the names of the components appearing on the form:

procedure TForm1.FormCreate(Sender: TObject);
var
i: Integer;

begin
ComboBox1.Items.Clear;
for i := 0 to Form1.ComponentCount -1 do

ComboBox1.Items.Add(Form1.Components[i].Name);
ComboBox1.Text := '';

end;
22 June 1998 Delphi Informant
The ListBox is populated with the property names of the
object selected in the ComboBox. This operation is per-
formed from the ComboBox’s OnChange event handler, as
shown in Figure 5.

This code is generic, in that the PTypeInfo is extracted
using the ClassInfo property of a component, a pointer
to which is returned using the FindComponent method.
FindComponent returns a reference to an instance of an
object based on a string, which, in this case, is the
selected component name in the ComboBox. Since
FindComponent returns a TComponent reference, and
Name is a property of TComponent, it’s unnecessary in this
example to cast the reference returned by FindComponent
to another class.

Using RTTI with Properties
Polymorphism permits you to treat objects that descend
from different classes similarly. For example, you can access
the Name property of any component that descends from
TComponent using a TComponent reference. This is exactly
what’s being done in the following code, which comes
from the PROPLIST example described earlier. It’s used to
populate the ComboBox with a list of the form’s compo-
nent names:

for i := 0 to Form1.ComponentCount -1 do
ComboBox1.Items.Add(Form1.Components[i].Name);

However, the ability to treat these components polymorphi-
cally in this way is possible only when the property (or
method) being accessed is visible in the shared ancestor class.
Name, in this example, is declared published in TComponent,
and therefore satisfies this requirement.

When two or more objects have the same property, but that
property is not declared as public or published in a common
ancestor, you cannot access it polymorphically using a refer-

DBNavigator

Figure 6: The PropInfo main form when it’s first displayed.

Figure 7: The PropInfo main form after clicking the button
labeled Color Controls and selecting the color clBlue.
ence to the ancestor. An example of a property such as this is
Color. The Color property of both the TEdit and TMemo
classes is inherited from TControl. However, this property is
declared as protected in TControl. The Color property is re-
declared as published in the TEdit and TMemo class defini-
tions, respectively. Since TEdit and TMemo do not share this
property in an ancestor class with sufficient visibility to be
accessed at run time, it isn’t possible to treat these two classes
polymorphically with respect to the Color property. For
example, the following code generates a compiler error:

for i := 0 to Self.ControlCount - 1 do
Self.Controls[i].Color := clTeal;

By comparison, the Hint property, which is declared as
published in TControl, can be treated polymorphically for
any TControl descendant. For example, the following code
compiles properly:

for i := 0 to Self.ControlCount - 1 do
Self.Controls[i].Hint := 'hi' + IntToStr(i);

Fortunately, RTTI provides a mechanism that permits you
to access published properties in a generic fashion across
classes, even when those classes do not share a visible
inherited version of the property. This mechanism is pro-
vided through a series of procedures with names like
SetOrdProp, SetStrProp, SetMethodProp, and so forth.

These set methods require a PPropInfo reference to the prop-
erty. This reference is generated by a call to GetPropInfo:

function GetPropInfo(TypeInfo: PTypeInfo;
const PropName: string): PPropInfo;

You then pass this PPropInfo reference to an appropriate set
method. The following is SetOrdProp, which can be used with
any Integer or Longint value:

procedure SetOrdProp(Instance: TObject;
PropInfo: PPropInfo; Value: Longint);

The use of GetPropInfo and SetOrdProp are demonstrated in the
PROPINFO project. This project includes a button with the
following OnClick event handler attached to it:

procedure TForm1.Button1Click(Sender: TObject);
var
PropInfo: PPropInfo;
i: Integer;

begin
if ColorDialog1.Execute then

for i := 0 to Self.ControlCount - 1 do begin
PropInfo := GetPropInfo(Self.Controls[i].ClassInfo,

'Color');
if Assigned(PropInfo) then
SetOrdProp(Self.Controls[i], PropInfo,

ColorDialog1.Color);
end;

end;

When you click this button, the for loop iterates through all
TControl descendants on the form. For those controls that
have PropInfo for a Color property, SetOrdProp is called to
23 June 1998 Delphi Informant
color the control. Figure 6 shows how this form looks before
clicking the button, and Figure 7 shows how it looks after the
button has been clicked.

Conclusion
RTTI is information about the published properties of your
classes that the compiler stores in your executable. Using the
procedures and functions of the typinfo unit, you can extract
this information at run time. When used effectively, RTTI
can simplify your code and reduce your reliance on string
constants that can be difficult to maintain. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is author of more than a dozen books, including
Delphi in Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing Editor
of Delphi Informant, and was a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://idt.net/~jdsi. You can also reach Jensen Data Systems at
(281) 359-3311, or via e-mail at cjensen@compuserve.com.

http://idt.net/~jdsi

COM Callbacks
Part I: A Hand-coded Callback Interface Manager

Dynamic Delphi
Delphi 3 / COM

By Binh Ly

Figure 1: The chat client, ChatC

24 June 1998 Delphi Informant
A COM callback interface allows a COM server component to invoke methods
of objects that reside on the client application. Callbacks are usually handy

for notifying the client whenever important changes on the server need to be
tracked. An example where a callback may be useful is to provide data change
notifications to client users in a multi-user, client/server database application.
This two-part series will demonstrate two
methods of implementing callbacks in your
Delphi 3 applications. This month’s topic is a
hand-coded callback interface manager; next
month the discussion turns to connectable
objects, i.e. connection points.

A Simple Chat Program
To demonstrate both methods, we’ll develop
a simple multi-user chat application. This
application consists of a client and a server.
On the server side (ChatServer), a chat chan-
nel object (ChatChannel) is used to imple-
ment a single chat channel to which several
clients can connect. To be able to connect to
ChatChannel, each client will create a con-
nection server object (ChatConnection) from
which it can access the single ChatChannel
onnection, and ChatChannel objects.
object that resides on the server. Each chat
client can then, through ChatConnection,
request ChatChannel to broadcast a chat mes-
sage to every other client that’s connected to
ChatChannel. Figure 1 shows the interaction
among the client, ChatConnection, and
ChatChannel objects.

For ChatChannel to broadcast chat messages
to its clients, each client application will
implement an IChatEvent interface using a
ChatEvent object. The client will then pass
a pointer to this interface (to ChatChannel)
so ChatChannel can invoke a callback
method of IChatEvent. After ChatEvent
receives a broadcast call from ChatChannel,
it will display the chat message on the
client’s main form to simulate the effect of
a live chatting session, such as one of those
chat services on the Web. A closer look at
the chat application’s objects can be found
in the next section.

Chat’s Application Objects
Figure 2 shows the IChatChannel and
IChatConnection interfaces for the
ChatChannel and ChatConnection server
objects, respectively. Using COM, the client
initially creates a ChatConnection object, then
uses ChatConnection’s ChatChannel property
to connect to the single ChatChannel object
on the server.

IChatChannel = interface
function ConnectUser(const Callback: IChatEvent;

var UserId: Integer): WordBool;
function DisconnectUser(UserId: Integer): WordBool;
procedure BroadcastMessage(const UserName,

Message: WideString);
end;

TChatChannel = class(TAutoObject, IChatChannel);

IChatConnection = interface
procedure BroadcastMessage(
const UserName, Message: WideString);

property ChatChannel: IChatChannel
end;

TChatConnection = class(TAutoObject, IChatConnection);

Figure 2: The IChatChannel and IChatConnection interfaces.

IChatEvent = interface
procedure GotMessage(const UserName,

Message: WideString);
end;

TChatEvent = class(TAutoIntfObject, IChatEvent);

Figure 3: The IChatEvent interface.

Dynamic Delphi

TChatUser = class
public

UserId: Integer;
Callback: IChatEvent;

end;

TChatUsers = class
public

function AddUser(const Callback: IChatEvent;
var UserId: Integer): Boolean;

function DeleteUser(UserId: Integer): Boolean;
function FindUser(UserId: Integer): Integer;
function Count: Integer;
property Items[i: Integer]: TChatUser read GetItems;

end;

Figure 4: The TChatUsers and TChatUser classes.
The client then calls ChatChannel ’s ConnectUser method to
establish a connection to the channel so the client can start
participating in a chat session. ConnectUser accepts a Callback
parameter of type IChatEvent, which is used by ChatConnection
to notify each of its clients whenever it needs to broadcast a
chat message. The UserId parameter is used by ChatChannel to
return a connection ID number, which will be used by the
client when it later wants to disconnect from the channel using
the DisconnectUser method.

Using ChatConnection, the client can call BroadcastMessage to
broadcast a chat message to other chat clients connected to
ChatChannel. BroadcastMessage’s UserName parameter is used to
tell other clients the identity of the broadcasting user; Message is
a string the client wishes to broadcast. BroadcastMessage inter-
nally calls ChatChannel ’s BroadcastMessage method which, in
turn, iterates through ChatChannel ’s list of chat client users and
calls the GotMessage method for each user’s IChatEvent callback.
Figure 3 shows the IChatEvent interface for the client’s
ChatEvent object.
25 June 1998 Delphi Informant
Now we’re ready to look at an implementation of a hand-coded
callback interface manager for our chat server. The basic imple-
mentation of an interface callback manager is for the server to
maintain an internal list of the callback interfaces implemented
by each client object. For the server to maintain this list, the
client must explicitly tell the server when it wants to connect
and disconnect its callback interface. This can easily be done by
exposing a method of one of the server objects where the client
can pass a pointer to the callback interface as a parameter.

Implementing the Server
Our chat application server provides a few objects that can
demonstrate the necessary parts in implementing a simple
callback mechanism. ChatChannel ’s ConnectUser method
allows the client to pass in an IChatEvent interface pointer
that ChatChannel stores internally so it can later use it to
broadcast chat messages to the client.

ChatChannel implements ConnectUser using a helper class
(TChatUsers), which is simply a list of individual chat user
(TChatUser) items. Figure 4 shows the TChatUsers and
TChatUser classes. ChatUsers manages the chat clients for
ChatChannel by storing each user’s callback interface together
with a unique ID (which is used to identify each client con-
nection) using the TChatUser class. ChatChannel can then
simply add, remove, or find a user, and iterate all the users by
implementing the methods of TChatUsers.

Figure 5 shows the implementation of ChatChannel ’s
methods using a contained TChatUsers instance, FUsers.
Note how easy it is for ChatChannel to implement its
BroadcastMessage method by using the Count and Items
properties of TChatUsers.

If you recall, ChatServer provides a ChatConnection object
the client uses to connect to ChatChannel. ChatServer con-
tains only one instance of ChatChannel, but can have mul-
tiple ChatConnection objects that connect to this single
ChatChannel instance. ChatConnection implements this
mechanism by maintaining a global instance of
ChatChannel (MainChatChannel), creating this instance
the first time it is requested, then simply returning this
global instance on succeeding requests from the client.

Because ChatConnection creates an instance of ChatChannel
internally, it must take care of releasing this instance when-
ever it’s no loner needed. Because there could be multiple
ChatConnection objects per server, ChatServer tracks the
count of ChatConnections as they are created and released,
and it releases MainChatChannel only if the last
ChatConnection has been released. Figure 6 shows
ChatConnection’s implementation of this methodology using
the Initialize, Destroy, and Get_ChatChannel methods. Also,
note that ChatConnection’s BroadcastMessage method is sim-
ply a wrapper call to ChatChannel ’s BroadcastMessage.

Implementing the Client
On the client side, we implement a ChatEvent object that sup-
ports the IChatEvent interface so we can handle the GotMessage

Dynamic Delphi
callback method. To do this, we create a TChatEvent class that
inherits from Delphi’s TAutoIntfObject class. We use
TAutoIntfObject instead of TAutoObject, because TChatEvent is
only an internal class to the client application; we don’t really
need it registered for other applications to be created.

Figure 7 shows the TChatEvent class. TChatEvent surfaces an
OnMessage event so other objects in the client application can
provide an OnMessage handler that does some specific pro-
cessing whenever TChatEvent receives a chat message from
the server. The first two lines in TChatEvent’s constructor ini-
tialize TChatEvent so its IChatEvent methods can be dis-
patched (called) as a dual interface from the server. The con-
structor also calls an extra _AddRef so ChatEvent doesn’t auto-
matically get destroyed whenever the server releases the
IChatEvent interface pointer. Note that there should be no
problems about ChatEvent not getting destroyed when calling
this extra _AddRef because the client application will explicit-
26 June 1998 Delphi Informant
ly create and free an instance of ChatEvent. With TChatEvent,
our client application can easily handle chat messages coming
from the server.

Our client application consists of a main form, TfrmMain
(see Figure 8), that allows a user to connect/disconnect from
ChatServer, broadcast a chat message, and display incoming
chat messages from other chat clients.

To connect to ChatServer, the client first creates a
ChatConnection server object. Using ChatConnection’s
ChatChannel property, the client then registers itself as a
chat user using the ConnectUser method, passing it an
IChatEvent interface pointer of a TChatEvent instance. This
is all shown in Figure 9. The variables FChatConnection,
FChatEvent, and FUserId are all members of TfrmMain;
FChatEvent is initialized as an instance of TChatEvent.
Disconnecting from ChatChannel is as simple as calling the
DisconnectUser method, passing the UserId obtained earlier
from calling ConnectUser.

To broadcast a chat message, the client simply calls
ChatConnection’s BroadcastMessage method. To receive an
incoming chat message, the client provides an OnMessage
handler for the ChatEvent object. This handler takes the
chat message and appends it to the Chat Messages memo
on the main form (see Figure 10).
TChatChannel = class(TAutoObject, IChatChannel)
protected
{ IChatChannel }
function ConnectUser(const Callback: IChatEvent;

var UserId: Integer): WordBool;
function DisconnectUser(UserId: Integer): WordBool;
procedure BroadcastMessage(
const UserName, Message: WideString);

protected
FUsers: TChatUsers;
procedure Initialize; override;

public
destructor Destroy; override;
property Users: TChatUsers read FUsers;

end;

function TChatChannel.ConnectUser(
const Callback: IChatEvent;
var UserId: Integer): WordBool;

begin
Result := Users.AddUser(Callback, UserId);

end;

function TChatChannel.DisconnectUser(
UserId: Integer): WordBool;

begin
Result := Users.DeleteUser(UserId);

end;

procedure TChatChannel.BroadcastMessage(
const UserName, Message: WideString);

var
i: Integer;

begin
for i := 0 to Users.Count - 1 do
Users[i].Callback.GotMessage(UserName, Message);

end;

procedure TChatChannel.Initialize;
begin
inherited;
FUsers := TChatUsers.Create;

end;

destructor TChatChannel.Destroy;
begin
FUsers.Free;
inherited;

end;

Figure 5: TChatChannel class definition and method imple-
mentations.
TChatConnection = class(TAutoObject, IChatConnection)
protected
{ IChatConnection }
function Get_ChatChannel: IChatChannel; safecall;
procedure BroadcastMessage(
const UserName, Message: WideString); safecall;

protected
procedure Initialize; override;
destructor Destroy; override;

end;

procedure TChatConnection.Initialize;
begin
inherited;
ChatConnections := ChatConnections + 1;

end;

destructor TChatConnection.Destroy;
begin
inherited;
ChatConnections := ChatConnections - 1;
if (ChatConnections <= 0) then

MainChatChannel := nil;
end;

function TChatConnection.Get_ChatChannel: IChatChannel;
begin
if (MainChatChannel = nil) then

MainChatChannel := TChatChannel.Create;
Result := MainChatChannel;

end;

procedure TChatConnection.BroadcastMessage(
const UserName, Message: WideString);

begin
if (MainChatChannel <> nil) then

MainChatChannel.BroadcastMessage(UserName, Message);
end;

Figure 6: TChatConnection class definition and implementation.

Figure 8: ChatClient’s main form.

procedure TfrmMain.ConnectUser;
begin
if (FChatConnection = nil) then

begin
FChatConnection := CoChatConnection.Create;
FChatConnection.ChatChannel.ConnectUser(

FChatEvent as IChatEvent, FUserId);
end;

end;

procedure TfrmMain.DisconnectUser;
begin
if (FChatConnection <> nil) then

begin
FChatConnection.ChatChannel.DisconnectUser(FUserId);
FChatConnection := nil;

end;
end;

Figure 9: Connecting to ChatServer using ChatConnection.

procedure TfrmMain.FormCreate(Sender: TObject);
begin
FChatEvent := TChatEvent.Create;
FChatEvent.OnMessage := ChatEventMessage;

end;

procedure TfrmMain.ChatEventMessage(
const UserName, Message: string);

begin
Memo1.Lines.Add(UserName + '> ' + Message);

end;

Figure 10: Providing a handler for TChatEvent.OnMessage.

TChatMessageEvent = procedure(
const UserName, Message: string) of object;

TChatEvent = class(TAutoIntfObject, IChatEvent)
protected
{ IChatEvent }
procedure GotMessage(
const UserName, Message: WideString); safecall;

protected
FOnMessage: TChatMessageEvent;

public
constructor Create;
property OnMessage: TChatMessageEvent
read FOnMessage write FOnMessage;

end;

procedure TChatEvent.GotMessage(
const UserName, Message: WideString);

begin
if Assigned(OnMessage) then

OnMessage(UserName, Message);
end;

constructor TChatEvent.Create;
var
ifTypeLib: ITypeLib;

begin
OleCheck(LoadRegTypeLib(LIBID_ChatServer,

1, 0, 0, ifTypeLib));
inherited Create(ifTypeLib, IChatEvent);
_AddRef;

end;

Figure 7: TChatEvent class definition and implementation.

Dynamic Delphi
Conclusion
As we’ve seen, a simple hand-coded interface callback man-
ager can be implemented by writing a class that manages
the list of the callback interfaces. In our chat server,
TChatUsers is the interface callback manager. By using
TChatUsers, ChatChannel is relieved of the details involved
in managing each client’s IChatEvent interface, thus mak-
ing ChatChannel ’s method implementations simple and
straightforward.

On the client side, there needs to be an object that imple-
ments the callback interface passed to the server. TChatEvent
serves this purpose, and at the same time encapsulates the
callback notification method using the OnMessage event. This
encapsulation technique ensures the code used to implement
27 June 1998 Delphi Informant
the client application never needs to know anything about the
IChatEvent interface details.

Because implementing client interface callbacks is a common
necessity when developing distributed applications, COM
provides an approach to this problem using a more general-
ized concept of our hand-coded interface manager. This con-
cept is called the connection points methodology. Next
month, we’ll wrap up this two-part series on COM compo-
nent callbacks in Delphi by introducing and implementing
the connection points methodology. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806BL.

Ever since Delphi 1 came out, Binh Ly has found Windows programming to be a
lot of fun and extremely rewarding. Binh currently works as a Systems Analyst at
Brickhouse Data Systems, Inc. developing core functionality for Brickhouse’s
Business Object Architecture (BOA) application development framework. Binh
can be reached at bly@brickhouse.com.

28 June 1998 Delphi Informant

Pirates Beware!
TSeatChecker Enforces Run-time License Agreements

Delphi at Work
Delphi 1, 2, 3 / Software Piracy

By Stephen R. Broadwell
Sometimes, it seems as though software piracy was the third oldest profes-
sion. No matter how much effort is put into protecting software, someone

always finds a way to outsmart the programmers and use or distribute the
application illegally. This is especially true in Europe, where piracy is a far
greater problem than in the US. The worst part is that most software pirates are
themselves programmers, and should realize that by hacking software, they are
simply cheating other programmers out of just compensation for their work.
Software piracy comes in different forms.
There is the direct, deliberate piracy, wherein
some zit-faced teenager hacks his way into
the latest game, places an assembly JMP
command conveniently around the algorithm
that checks if the correct phrase has been
typed in from the appropriate page of the
manual, then uploads the resultant zip file
onto forty or fifty of his favorite Internet
sites. But there are also far more common
and less dramatic forms of piracy. A company
buys five licenses to use an application, then
conveniently neglects to check and see that
fifteen people have installed it and are using
it. Or perhaps they have hired some new peo-
ple lately, and simply haven’t noticed that
they’ve exceeded the number of users pre-
scribed by their license agreement. And yes,
maybe they deliberately cut corners by pur-
chasing a smaller number of licenses than
they knew they would use.

Whatever the reason, software license agree-
ments are violated en masse on a daily basis.
It’s naive to think that simply displaying the
agreement in a dialog box with an I Accept

button in the installation program will pro-
tect a company from lost revenues. The soft-
ware itself must be “aware” of the license, and
must be able to enforce it.

In this article, I present TSeatChecker, a
Delphi component for enforcing software
license agreements programmatically. (The
component and a demonstration program are
available for download; see end of article for
details.) While it doesn’t present the ultimate
solution, it does a pretty good job of detect-
ing licensing violations and informing the
user via an error message.

Software Licenses
There are basically two types of software
licenses: seat-based and concurrent use-based.
Seat-based licenses are ones in which the user
pays for a certain number of seats to be dis-
tributed in a static manner. The classic exam-
ple is the “like a book” licensing that was
popular in the late 1980s, where a seat is
assigned to a user. The user may install the
software on his or her PC at home and his or
her PC at work, but the software shouldn’t be
in use at both locations at the same time.

Concurrent use-based licenses are ones in
which the user pays for a certain number of

Figure 1: The Competence/Motivation rule.

Delphi at Work

Name Type Description

Index Autoincrement Primary key
Username Alphanumeric (40) Secondary index

Figure 2: A simple lurch table has two fields: Index and Username.
seats that may be allocated dynamically. If five licenses are
purchased, any number of individuals may use the software
as long as no more than five use it at the same time.

The Problem
Whether seat-based or concurrent use-based, software
license agreements are meaningless unless the software is
able to enforce them. The problem is that most end users
are motivated to violate the license agreement. This is
human nature; most people, when confronted with some-
thing they’re not allowed to do, will harbor a desire to find a
way to do it. Thus, any system must be better than the
expected competence of the end user, multiplied by their
motivation to overcome the system. I call this the
Competence/Motivation rule (see Figure 1).

Unfortunately, this is easier said than done. When it is
launched, the software must somehow be aware of all the
other instances of itself that are in use by the same customer,
then determine whether to allow itself to be used by this cus-
tomer. It must do all this in such a way that the end user:
1) is unaware of how it’s being done, and
2) lacks the expertise and/or motivation to figure out a way

around it.

A number of techniques have been developed in an attempt
to address this issue, from dongles (which users hate) to sema-
phores (which programmers hate). What’s needed is an easily
implemented method for enforcing the license agreement
that’s effective, yet transparent to the end user.

The Solution
For multi-user database applications, there exists such a
method. The key assumption is that although the users might
be using the software on different PCs, perhaps even at differ-
ent sites, they will be connecting to the same database. This is
the common denominator for the entire installation, and we
will exploit it to enforce the license agreement at run time.

This technique involves setting up a lurch table in the data-
base. A lurch table is simply a table that keeps track of who is
currently logged on. If the license is seat-based, the software,
when run, first checks the lurch table to see if someone else
with the same user ID is currently using the software. If so, it
denies access until that person exits the system. If the license
is concurrent use-based, the software checks the total number
of users in the lurch table. If there are no more seats available,
it denies access until a seat becomes available.

A lurch table is simple to set up, and it’s fairly easy to add
support for it in your code. Also, it’s more than enough to
deter the average user with the average motivation from
circumventing it.

Using a Lurch Table
The simplest form of a lurch table is defined in Figure 2.
This Paradox table, Lurch.db, contains two fields: Index
(the primary key) and Username. For convenience, I made
Index an Autoincrement field. I also put a secondary index
29 June 1998 Delphi Informant
on Username so I could easily search through the table to
find a particular user name.

Once an application determines there is an available seat, it
appends a record to the lurch table and stores the user’s user-
name in it. It posts the record, then re-edits it. The record
remains in the edit state as long as the user is using the appli-
cation. This is key; keeping a Paradox table’s record in edit
state locks it. And as long as the record is locked, it cannot be
deleted from the table. It will only be unlocked if the applica-
tion performs an update or a cancel, or if the user’s worksta-
tion is rebooted or otherwise disconnected from the database.

When another user runs the application, it goes through
the lurch table and attempts to delete each record. The
ones it is able to delete are the ones that were left over from
improper termination of the application, e.g. when the
workstation was rebooted. The ones it’s unable to delete are
the ones that are being locked by other users. If this is a
seat-based licensed application, the program checks if the
user’s username is already in the lurch table. If so, it reports
an error and terminates. If this is a concurrent use-based
license application, the program gets a record count of the
lurch table. If there are more records than the number of
concurrent users allowed by the license agreement, it
reports an error and terminates.

The most straightforward way to manage a lurch table
would be to put the process we’ve just described into the
OnCreate event of your application’s main form.
Unfortunately, this approach is clumsy and results in code
bloat in the main application. A better and more object-
oriented technique would be to design a component to
manage this. Ideally, you would drop such a component
onto the login form at design time and modify two impor-
tant properties: DatabaseName and Method. Then, at run
time, all your application needs to do is feed this compo-
nent a Username, and call its SitDown method to grab and
hold one of the seats in the lurch table.

Delphi at Work
Introducing TSeatChecker
TSeatChecker is a Delphi component I wrote that demonstrates
the use of a lurch table to enforce software license agreements
(see Listing One, beginning on this page). It descends directly
from TComponent and adds the DatabaseName, Method, Status,
and Username properties. It also overrides the constructor and
provides two new methods: SitDown and StandUp.

The DatabaseName property identifies which database
holds the lurch table. This is the main database for the
application. Method specifies whether the license is seat-
based or concurrent use-based. Status indicates whether a
seat has been reserved. It’s a writable property; setting it
will change the status, i.e. “sit” the application down
(reserve a seat), or “stand” it back up (release a seat).
Username specifies the user’s login name, which is neces-
sary for seat-based licensing.

The SitDown and StandUp methods reserve and release a
seat, respectively. TSeatChecker also overrides the construc-
tor to create an instance of TTable called fLurchTable, which
is used to access the lurch table and keep the seat record
locked. It also defines a protected virtual method named
EmptyLurchTable, which, as the name suggests, deletes all
the unlocked records from the lurch table.

Using TSeatChecker
TSeatChecker is best used in your application’s main form,
since it must be in existence for as long as the user is using
your application. Drop a copy of TSeatChecker onto the
form, set the DatabaseName property to the application’s
database alias, and set the Method property to either
mByTotal (for concurrent use-based licenses) or mByUser
(for seat-based licenses).

Then, when the user enters the correct username and pass-
word into a password dialog box (see Figure 3), set the
Username property to the correct value and call the SitDown
method. An exception will be raised if TSeatChecker is
unable to reserve a seat. When your application is finished,
call the StandUp method (although the seat will be released
even if you forget to call the method).
Figure 3: The TSeatChecker demonstration program’s password
dialog box.

30 June 1998 Delphi Informant
Notes About TSeatChecker
TSeatChecker is presented here for academic purposes only.
You will no doubt identify some areas that could easily be
improved. For example, you may wish to rename the lurch
table from Lurch.db to something more subtle (after all,
there’s no telling how many people are reading this article).
You may also want to encrypt the username that’s passed to
the lurch table to prevent users from figuring out it’s a lurch
table. If you have a suite of applications that use the same
database, you may wish to add a field to the lurch table (and
a corresponding property to TSeatChecker) to identify the
name of the application being used, so licenses for separate
applications can be enforced using the same table.

As a programmer, I was tempted to write a property editor for
the DatabaseName property that would display a drop-down list
of all the aliases in the BDE. However, in the interest of provid-
ing clean and simple source code, I restrained myself. You will
probably wish to add this feature in your implementation.

In TSeatChecker, I hard-coded the value for kMaxSeats to 3. A
better way would be to load this value from a DLL, so you
can easily increase the number of seats a user may use by sim-
ply sending them a new DLL.

TSeatChecker works equally well for multiple instances of an
application running on different workstations or on the same
workstation. It will work with any database, as long as the
database supports record locking.

Conclusion
While TSeatChecker is not the ultimate solution, it does a pretty
good job of enforcing a software license agreement programmat-
ically. It’s easy to implement, and is more than a match for the
average user with the average motivation to cheat on a license
agreement. And because of its simplicity, it’s unlikely to be the
cause of memory leaks or protection faults. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806SB.

Stephen R. Broadwell is Senior Product Manager for Bridgeway Software, Inc. in
Houston, TX. He has written several articles on Delphi programming techniques
and has appeared before his local Delphi users group, the Houston Association
of Delphi Professionals (http://www.hadp.org). He may be reached at sbroad-
well@bridge-way.com.
Begin Listing One — TSeatChecker
unit Sccomps;
{ ScComps.PAS by Stephen R. Broadwell copyright (c) 1997

This unit defines the component TSeatChecker, a license-
enforcing component for database applications. By using
TSeatChecker in your code, you can enforce your
licensing agreement by limiting either the total number
of concurrent users of your software, or the number of
seats. TSeatChecker works by making use of a lurch table

http://www.hadp.org

Delphi at Work
to keep track of who is using the software.

Please direct any and all questions/comments to:
sbroadwell@bridge-way.com.
*** }

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, DB, DBTables;

const
{ This is the name of the lurch table. You may want to

change it for security reasons. }
kLurchTableName = 'LURCH.DB';
{ The maximum number of seats. This is only useful for

applications that are licensed by concurrent use. You
may want to make this a property, or get it from a DLL
or an ActiveX or OLE control, to make it easier to
adjust the number of seats at a customer site, i.e.
drop in a new DLL to increase the licensed number of
concurrent users. }

kMaxSeats = 3;

type
{ This is a general exception for all errors within this

unit. }
ESeatCheckError = class(Exception);
{ This type defines the status of the application,

whether it is occupying one of the licensed seats or
not. }

TStatus = (sSitting, sStanding);
{ TMethod defines the two methods of software licensing

-- by user (seat-based) or by total number of users
(concurrent use-based). }

TMethod = (mByUser, mByTotal);

TSeatChecker = class(TComponent)
private

{ Private declarations. }
fDBName: TFileName;
fStatus: TStatus;
fMethod: TMethod;
fUserName: string;
fLurchTbl: TTable;
procedure SetDBName(value: TFileName);
procedure SetStatus(value: TStatus);
procedure SetMethod(value: TMethod);

protected
{ The EmptyLurchTable method empties out all of the

'phantom' users in the table. }
procedure EmptyLurchTable; virtual;

public
{ Public declarations }
constructor Create(AOwner: TComponent); override;
{ These two methods are the business end of

TSeatChecker. They control the occupying and
releasing of license seats by the application. }

procedure SitDown;
procedure StandUp;

published
{ DatabaseName is the name of the application database.

It is important to set this to the database being
used by the application, otherwise the whole purpose
of TSeatChecker is defeated. }

property DatabaseName: TFileName
read fDBName write SetDBName;

{ Status indicates whether the application holds
a seat. }

property Status: TStatus read fStatus write SetStatus;
{ Username is the name of the user checking for

a seat. }
property UserName: string

read fUserName write fUserName;
{ Method is the method of licensing being used, either

seat-based or concurrent-use based. }
31 June 1998 Delphi Informant
property Method: TMethod read fMethod write SetMethod;
end;

procedure Register;

implementation

{ $IFDEF WIN32 }
{ $R SCCOMPS.D32 }

{ $ELSE }
{ $R SCCOMPS.D16 }

{ $ENDIF }

procedure Register;
begin

RegisterComponents('SeatCheck', [TSeatChecker]);
end;

{ TSeatChecker }

constructor TSeatChecker.Create(AOwner: TComponent);
begin

{ Begin by calling the inherited constructor. }
inherited Create(AOwner);
{ Create the lurch TTable with Self as the owner -- this

way we don't have to worry about destroying it. }
fLurchTbl := TTable.Create(Self);
{ Make sure we're using the right index (important during

the FindKey operation in the SitDown method). }
fLurchTbl.IndexName := 'Username';
{ Initialize Status to be standing, i.e. not occupying a

seat. }
fStatus := sStanding;

end;

procedure TSeatChecker.SetDBName(value: TFileName);
begin

{ This is your basic property access method. You may wish
to add some extra functionality to it, such as checking
to see that a lurch table exists in the specified
database, and creating one if it does not. }

fDBName := value;
end;

procedure TSeatChecker.SetStatus(value: TStatus);
begin

{ Depending on the value of Value, call the SitDown or
the StandUp method. I do this so that I can test my
application in design-mode, i.e. if I want to reserve a
seat, I just change the value in the Object Inspector.
This is the beauty of component-oriented programming. }

case value of
sSitting: SitDown;
sStanding: StandUp;

end;
end;

procedure TSeatChecker.SetMethod(value: TMethod);
begin

{ Make sure that a seat is not being held first. }
if fStatus = sSitting then

raise ESeatCheckError.Create(
'Cannot perform this action while holding a seat.');

fMethod := value;
end;

procedure TSeatChecker.EmptyLurchTable;
{ This method is key to the whole trick. Every time a user

logs on to the main application, TSeatChecker creates a
record in the lurch table for the user and holds it in
edit state. As long as the record remains in this state,
it cannot be deleted. This is true regardless of whether
it is being locked by an application on another PC, or by
one on the same PC. If the user quits the application
without giving up the seat (e.g. their PC is rebooted,
or the application crashes), then the record is no longer

Delphi at Work
in edit state, but it is still present in the table.
This is called a 'phantom' user. Therefore, before
attempting to reserve a seat, TSeatChecker runs through
the lurch table and attempts to delete every record.
'Phantom' records will be deleted, but actual occupied
seats will not. Once the method is done, the only
records remaining correspond to actual seats. }

var
i: integer;

begin
{ Check to see that the table is not empty. }
if not (fLurchTbl.BOF and fLurchTbl.EOF) then

begin
{ Go to the first record. }
fLurchTbl.First;
{ Run through all the records and attempt

to delete them. }
for i := 0 to fLurchTbl.RecordCount-1 do begin

try
fLurchTbl.Delete;

except
{ If the record is locked (i.e. if this is not a

'phantom' user but rather an actual license
seat being held)... }

on e: EDBEngineError do
if Copy(e.message,1,30) <>

'Record locked by another user.' then
raise

else
{ ...then move on to the next record. }
fLurchTbl.Next;

end; { try-except }
end; { for-do }

end; { if-then }
end;

procedure TSeatChecker.SitDown;
begin

{ Make sure we're not attempting to sit down in more than
one seat. }

if fStatus = sSitting then exit;
{ Make sure we've got a valid database. You may want to

do additional checking here, to ensure that fDBName
corresponds to a valid alias, using
Session.GetAliasNames. }

if fDBName = '' then
raise ESeatCheckError.Create('No database specified.');

{ Close the lurch TTable and set all of its properties. }
fLurchTbl.Close;
fLurchTbl.DatabaseName := fDBName;
fLurchTbl.TableName := kLurchTableName;
{ Open the lurch table and empty it of 'phantom' records

(see EmptyLurchTable or the associated documentation
for more details). }

fLurchTbl.Open;
EmptyLurchTable;
{ Check to see if another seat is available. If the

license is based on concurrent users, then the total
number of occupied seats must be less than kMaxSeats,
otherwise an exception is raised. }

case fMethod of
mByTotal :

if fLurchTbl.RecordCount >= kMaxSeats then
raise ESeatCheckError.Create('No seats available');

{ On the other hand, if the license is based on seats,
then each user may only be logged in one time.
Therefore, if the user attempting to log in is
already logged in, an exception is raised (see the
note on licensing at the bottom of this file, or
check the associated documentation). }

mByUser :
if fLurchTbl.FindKey([fUserName]) then

raise ESeatCheckError.Create(
'This userid already has a seat.');

end;
{ If there is a seat available, reserve it. TSeatChecker
32 June 1998 Delphi Informant
does this by appending a new record to the table with
the user's name, then editing that record (and never
posting). This locks the record and prevents it from
being deleted by the EmptyLurchTable method above. You
may wish to modify this. Primarily, you probably want
to encrypt the username string, so that it is more
difficult for an end user to find a way around
TSeatChecker. }

fLurchTbl.Append;
fLurchTbl.FieldByName('Username').AsString := fUserName;
fLurchTbl.Post;
fLurchTbl.Edit;
{ Finally, record the current status. }
fStatus := sSitting;

end;

procedure TSeatChecker.StandUp;
begin

{ Begin by making sure we're not already standing. }
if (fStatus = sStanding) then

Exit;
{ Also make sure that the lurch TTable is active

and in edit state. }
if (not fLurchTbl.Active) or

(fLurchTbl.state <> dsEdit) then
raise ESeatCheckError.Create('Already standing up.');

{ Cancel the edit; delete the record; close the table. }
fLurchTbl.Cancel;
fLurchTbl.Delete;
fLurchTbl.Close;
{ Finally, record the current status. }
fStatus := sStanding;

end;

end.

End Listing One

Formula Compiler
A Snappy Run-time Formula Evaluation Package

Greater Delphi
Delphi 1 / Delphi 2

By Vladimir Safin

Property

Lib

Source

Args

UnknownNam

Figure 1: The p

33 June 1998 Delphi Informant
This article describes a set of Delphi components that allow mathematical
functions to be quickly evaluated at run time — one to two and a half times

faster than hard-coded Delphi. It also describes how to create and maintain
user function libraries.
Formula parsing is becoming commonplace
in scientific, engineering, statistical, and
report-generating software packages. Run-
time formula evaluation is indispensable for
these tasks; applications such as MathCad or
Mathematica couldn’t work without it.

But formula parsing isn’t only helpful in these
fields; it’s required when we need to create a
flexible application. Let’s consider an exam-
ple; perhaps a complex database application,
or even a simple graph plotting program. In
such an application, some values depend on
others, but the formulas used in their calcula-
tion vary. In this case, it’s better to develop a
way to change formulas than to change the
source code and have to recompile the entire
program. In fact, the latter is impossible for
developing commercial products.

In addition, many applications require inten-
sive calculations. Some scientific tasks bring
the total number of function evaluations into
the billions. Therefore, it would be desirable
Description

The name of the user function
library, or TFormulaLib component.
By setting this property, you can
allow the use of functions defined in
a particular library.
The string containing the formula.
When changed, the new formula is
checked and compiled.
The number of the formula’s argu-
ments; a run-time, read-only property.

es Determines whether unknown vari-
able and function names are allowed.

roperties in the TFormulaCompiler component.
if the parser’s speed was comparable to the
execution speed of a hard-coded, compiled
function. This can only be achieved if the
parser is a real compiler (not an interpreter),
since only compilation would provide ade-
quate execution speed.

All these tasks can be accomplished using the
Formula Compiler (FC) package. FC is a set
of Delphi components that include the for-
mula parser. There are 16- and 32-bit versions
of this package. The package itself consists of
three components: TFormulaCompilerD,
TFormulaCompilerE, and TFormulaLib. FC is
a real compiler that generates optimized code
to evaluate the expression.

The TFormulaCompilerD and
TFormulaCompilerE Components
The TFormulaCompilerD and
TFormulaCompilerE components are the
heart of the package. What can we do with
them? We can pass the string which contains
an arithmetic expression to them. It will
then perform a full syntax check of the
string and confirm that the string represents
a valid formula. If this is true, it will then
allocate memory and generate optimized
machine code for evaluating the result. After
the formula has been compiled, we can sup-
ply arguments and evaluate the function.

These components are similar. Only one
method differs, so we won’t differentiate
between them in most cases; instead, we’ll refer
to them as TFormulaCompiler components.
The TFormulaCompiler components consist of
four properties, three methods, and two
events. The properties are listed in Figure 1.

Greater Delphi
Let’s consider the Source property more closely. When we
assign a string, FC checks the validity of the formula and
generates code if it’s valid, or raises an exception if it’s
invalid. The syntax of valid expressions is similar to Pascal
syntax. The source string can consist of numbers (they can
be written in the usual form or scientific notation), arith-
metic operation signs [+, -, *, /, ^], relational operators
[=,<,>,<>,<=,>=,!], braces [()], built-in and user-defined
Figure 2: Built-in Formula Compiler functions.

{ FC1: TFormulaCompilerD; }
{ X: Double }
FC1.Source := 'Frac(%1 + %0)';
{ X := Frac(3.3+2.2) = 0.5 }
X := FC1.F([2.2, 3.3]);
FC1.Source := 'Sqr(Max(%0 + 3, %1, %2))';
{ X := Sqr(Max(4, 2, 3)) = 16 }
X := FC1.F([1, 2, 3]);
FC1.Source := 'IIF(-1, 1, 2)';
{ Main arguments are unnecessary. }
{ X := IIF(-1, 1, 2) = 1 }
X := FC1.F([2, 5]);

Figure 3: Examples of using the Source property and F method.

34 June 1998 Delphi Informant
functions and their arguments, and the main arguments.
The only difference between classical Pascal and FC syntax
is that main arguments are integer numbers, preceded by
the percent character (%). The main argument list is
zero-based, hence %0 is the first argument. Built-in and
user-defined functions’ arguments should be placed within
brackets and separated by commas. FC is case-insensitive,
so it doesn’t distinguish between setting the source to

SIN(4) or SiN(4), for example.

There are more than 30 built-in
functions (see Figure 2). They are
the building blocks for construct-
ing virtually any formula. Most
of FC’s built-in functions are
common and are used in many
different programs, but there are
some functions that don’t have a
Pascal equivalent. Some of the
new functions correspond to
composite pieces of code. For
example, the IIF function corre-
sponds to an if..then..else state-
ment, which can be used to cre-
ate branch formulas or formulas
with a given condition.

Another important property of
FC is that it permits an unlimit-
ed number of arguments, which
neither Pascal nor Delphi allow.
As we see from Figure 2, FC has
four built-in functions with
unlimited parameters; we can
pass any number of parameters to
these functions. Thus, the MIN
function returns the minimum
from two numbers, as well as
from 10 numbers, without addi-
tional code or problems.

As previously mentioned,
TFormulaCompilerD and
TFormulaCompilerE have three
methods. The main method, F, is
used to obtain the result of a calcu-

lation. This method is different in the TFormulaCompilerE
and TFormulaCompilerD components:

function TFormulaCompilerD.F(
const X: array of Double): Double;

function TFormulaCompilerE.F(
const X: array of Extended): Extended;

The function arguments should be supplied in the X array.
The first number corresponds to the %0 argument, second
to %1, and so on. For the correct result to be returned, the
number of arguments passed to the F method should be
equal to or greater than the value of the Args property (see
Figure 3).

X
of X
t of X
of X
X
lue of X
t of X
l of X
arithm of X
arithm of X

t of X
 nearest integer
art of X
f X = X*X
 X*X*X
r Y

urn Y; otherwise return Z
rn 1; otherwise return 0

arithm of 2
n of X
 X
efficient X over Y
cosine of X
sine of X
tangent of X
lic sine of X
lic cosine of X
lic tangent of X

f arguments
f arguments

uments
rguments
Built-in Function Number of Arguments Meaning

SIN(X) 1 Sine of X
COS (X) 1 Cosine of X
TAN (X) 1 Tangent of
COTAN (X) 1 Cotangent
ATAN (X) 1 Arc tangen
ACOS (X) 1 Arc cosine
ASIN (X) 1 Arc sine of
ABS (X) 1 Absolute va
SQRT (X) 1 Square roo
EXP (X) 1 Exponentia
LN (X) 1 Natural log
LG (X) 1 Decimal log
INT (X) 1 Integer par
ROUND (X) 1 Rounds X to
FRAC (X) 1 Fractional p
SQR (X) 1 Quadrate o
CUBE (X) 1 Cube of X =
POW (X, Y) 2 X in a powe
IIF(X, Y, Z) 3 if X<>0 ret
NOT(X) 1 if X = 0 retu
PI 0 PI number
LN2 0 Natural log
CHS(X) 1 Change sig
FACT(X) 1 Factorial of
BINOM(X, Y) 2 Binomial co
COSH(X) 1 Hyperbolic
SINH(X) 1 Hyperbolic
TANH(X) 1 Hyperbolic
ASINH(X) 1 Arc hyperbo
ACOSH(X) 1 Arc hyperbo
ATANH(X) 1 Arc hyperbo
MIN(X, Y, Z, ...) unlimited Minimum o
MAX(X, Y, Z, ...) unlimited Maximum o
SUM(X, Y, Z, ...) unlimited Sum of arg
PROD(X, Y, Z,...) unlimited Product of a

Figure 4: Formula library editor and Formula editor dialog
boxes. They allows us to manipulate the library.

Greater Delphi
In most cases, setting the Source property and F method is
enough to build an application using FC. The other two
methods of TFormulaCompiler components provide an
additional service to the programmer. Using the Recompile
and NewFunction methods, the programmer can provide
additional checking of formulae and build it into his or her
own error handler.

The Recompile method checks the validity of the Source
property. It recompiles the expression if it’s valid, or sets
Source to default value 1 if it isn’t. Why would you need to
check the validity of a formula again? Imagine we have a
user function library with some functions defined, and the
Source property contains a reference to a user function
from this library. When we delete this function from the
library, Source will now contain an invalid formula and we
may want to reset Source to its default value. In this case,
it’s convenient to use the Recompile procedure. The last
method is NewFunction:

function NewFunction(S: string): Integer;

It checks the validity of the formula given in S; if S is
valid, it sets the Source property to S and returns 0.
Otherwise, it returns to the position in string S, where the
first error was detected. NewFunction can also return a neg-
ative value if any unexpected error has occurred, e.g. a
memory allocation error.

Now we know all about the properties and methods of the
TFormulaCompilerD and TFormulaCompilerE components.
Usually, we need to extend their capabilities (for example, by
adding new user functions and constants). The TFormulaLib
component provides this, as well as other new features.

The TFormulaLib Component
This component allows us to create and maintain libraries
of user functions and user aliases. Because it’s a non-visual
component, it’s derived directly from TComponent.
Therefore, TFormulaLib, as well as TFormulaCompilerD
and TFormulaCompilerE, can be placed on the Component
palette and easily incorporated in a project. To allow user
functions and aliases, which are defined in a library, to be
entered into the Source property of TFormulaCompiler
components, we need to set the Lib property to the partic-
ular library name.

TFormulaLib consists of only two methods and two prop-
erties. The first method is the Assign procedure, which
assigns the content of another library (see Delphi Help to
get more information about this method). The Aliases
property holds a list of user aliases, and the Functions prop-
erty is a list of user functions. Both properties are of
TFunctionList type. We’ll discuss this class and its func-
tionality later.

Let’s discuss user aliases and user functions, their proposed
usage, and the differences between them. Both aliases and
functions are referenced in the library by their name and have
35 June 1998 Delphi Informant
their own source. Let’s consider an example of an alias and
function already defined in the library:

{ Alias name is X, source is '%0' }
Alias : X = '%0'
{ Function name is XX, source is '%0 }
Function : XX = '%0'

Once the functions and aliases are defined in the library, they can
be used in the Source property (e.g. setting Source to COS(x) gives
the same result as COS(%0), but is more readable). All aliases are
replaced by their sources during compilation. So, using aliases
allows us to define user constants, gives short names for long
subexpressions, and avoids %nn notation (we can define new vari-
ables X, Y, Z, or X0, X1, X2 to use instead of %nn arguments).

When we utilize user functions in the Source property, we
should supply arguments if the function depends on some
other parameters. In the case of the XX function, it should be
written as COS(XX(%0)). It looks a little odd and gives the same
result as COS(%0), so we should define more substantial
functions, for example SIN(2*%0). User constants also can be
defined as functions, but only when we don’t need to provide
any arguments to it.

Aliases and user functions can be defined at design time, as well
as at run time. In the first case, we will use two dialog boxes:
Formula library editor, and Formula editor (see Figure 4). By
using them, we can perform all the operations on the library
contents. In the second case, simply use the Edit method of
TFormulaLib. The application was designed to be user-friendly,
and shouldn’t need any explanation.

To manipulate the library at run time, we have to use the
TFunctionList class functionality. This class has four properties
and three methods. The properties are:

Names[Index] — Holds the names of user functions. The
first function has Index equal to 0.
Sources[Index] — Holds the sources of the functions.
ArgCount[Index] — Holds the numbers of arguments in
the functions.
Count — A read-only property that holds the total num-
ber of entries in the library. (Note that the last entry has
an Index of Count -1.)

function TMainForm.FCFunction(const FuncName: string;
const X: array of Extended): Extended;

var
i: Integer;

begin
Result := 0;
{ Compare function name. }
if CompareText(FuncName, 'AVERAGE') = 0 then

begin
{ AVERAGE evaluation. }
for i := 0 to High(X) do

Result := Result + X[i];
Result := Result / (High(X) + 1)

end;
end;

function TMainForm.FCVariable(
const VarName: string): Extended;

var
i: Integer;

begin
Result := 0;
{ Compare variable name. }
if CompareText(VarName, 'RNDVAR1') = 0 then

Result := Random(1000)/1000
else if CompareText(VarName, 'RNDVAR10') = 0 then

Result := Random(1000)/100;
end;

Figure 6: Using OnFunction and OnVariable events.

Greater Delphi
Using these properties allows us to receive complete infor-
mation about the user functions or aliases, which are con-
tained in the library, as well as being able to rename them
and edit their sources. It’s important that the user function
name satisfies the following rule: It should begin with a let-
ter, followed by zero or more characters from the set of let-
ters, numbers, and underscore (_) sign. In other words,
the user function names follow the same syntax as Object
Pascal identifiers.

The TFunctionList class has three methods. The first is the
Add method, which adds a function or alias with a given
name and source to the library. This method returns 0 if the
addition was successful, or an error code otherwise. Error
codes are described in the section “FC Errors.” The Delete
method deletes the specified function from the library. The
IndexOf method returns the position of the specified function
in the library. The following code deletes the function with
the name SampleFunction from the library:

with FCLib.Functions do begin
Temp := IndexOf('SampleFunction');
if Temp >= 0 then

Delete(Temp);
end;

Figure 5 is an example of how we can store the contents of
the library to a file and load it again later. To make work-
36 June 1998 Delphi Informant
ing with functions and aliases easier, it’s a good idea to
store them in an .INI file (in the example,
EXAMPLE.INI) with two sections (Aliases) and
(Functions), where each entry is stored in the form
Name=Source (for example: SIN2x=SIN[2*%0]).

Unknown User Functions and Variables
It’s convenient to create and use new user functions and con-
stants by means of TFormulaLib. But sometimes it becomes
necessary to evaluate something unique or complicated that
can’t be expressed by only FC built-in functions (e.g. random
values or different statistic functions). In this case,
TFormulaCompiler components give us the opportunity to
use such custom functions or variables. In other words, FC
can use procedures written in Delphi.

There are two events: OnFunction and OnVariable. The first
one occurs when the parser should evaluate an unknown user
function. The second occurs when FC needs an unknown
variable value. The example in Figure 6 illustrates how we can
use this feature. Within the OnFunction event, the AVERAGE
function, with an unlimited number of arguments, is evaluat-
ed. The OnVariable event is used to assign a random value.
Now, we can set Source to:

AVERAGE(RNDVAR1, 2, 3, RNDVAR10)

FC Errors
When we work with a library, some errors can occur while
adding or editing aliases or functions. Errors can also occur
during the formula compilation process or when an unknown
function or variable name is used, but an appropriate event
handler isn’t assigned. Most programmers prefer to maintain
errors by themselves, so later we will consider the different
errors which can occur during the use of FC.
{ This is how to store library contents to the file. }
Ini := TIniFile.Create('EXAMPLE.INI');
if Ini <> nil then

with FormulaLib do begin
{ Store user aliases. }
for i := 0 to Aliases.Count - 1 do

WriteString('Aliases', Aliases.Names[I],
Aliases.Sources[I]);

{ Store user functions. }
for i := 0 to Functions.Count - 1 do

WriteString('Functions', Functions.Names[I],
Functions.Sources[I]);

Ini.Free;
end;

{ This is how to load library contents from the file. }
Ini := TIniFile.Create('EXAMPLE.INI');
if Ini <> nil then

with FormulaLib do begin
FL := TStringList.Create;
{ Fill string list with aliases names. }
Ini.ReadSection('Aliases', FL);
{ Load aliases. }
for i := 0 to FL.Count - 1 do

Aliases.Add(FL.Strings[I], Ini.ReadString(
'Aliases', FL.String[I], ''));

{ Clear string list. }
FL.Clear;
{ Fill string list with user functions names. }
Ini.ReadSection('Functions', FL);
{ Load functions. }
for i := 0 to FL.Count - 1 do

Functions.Add(FL.Strings[i], Ini.ReadString(
'Functions', FL.String[i], ''));

{ Free string list. }
FL.Free;
Ini.Free;

end;

Figure 5: Example of storing the library contents to a file and
then loading it.

Figure 7: A general demonstration involving the advanced cal-
culator, user library manager, and time test.

Figure 8: A graph demonstration.

Figure 9: Simple example of using FC in a database application.

Greater Delphi
Several integer constants are defined in the unit. These codes
are returned by the Add and NewFunction methods, allowing
us to trap, identify, and handle errors as necessary. These
methods can also return a positive value position — indicating
the position where the first syntax error was detected. So, using
these error codes, we can create custom error handlers. However,
FC has a built-in error handler, the FCCheck procedure:

procedure FCCheck(ErrorCode: Integer);

This procedure raises the EFCError exception with the mes-
sage, according to the ErrorCode parameter value. Thus, this
feature allows us to write the following Object Pascal code:

FCCheck(NewFunction('COS(4*)'));

which, in turn, generates an exception with the message
“Syntax error at pos 7.”
37 June 1998 Delphi Informant
Demonstration
The demonstration projects included with this article show
some ways of using the TFormulaCompiler and TFormulaLib
components. (The projects are available for download; see
end of article for details.)

The first demonstration (see Figure 7) includes an
advanced calculator, user function, aliases manager, and
time and events test. The calculator gives the user an
opportunity to input an expression in the edit field,
change parameters, and evaluate the result, while reporting
any error that has occurred. The function manager allows
the user to enter new functions and aliases, and then use
them in the calculator. The time test compares the calcula-
tion speed of a built-in function and the same function
coded in the unit. To change the time test function, we
would have to change the source code a little.

The graph demonstration (see Figure 8) allows the user to
choose between 10 3D surfaces, and seven 2D graphs. After
choosing a surface or graph equation, it will be immediately
calculated and plotted. All calculations are performed by the
TFormulaCompilerE component.

The database demonstration (see Figure 9) shows how we can
use FC with databases. This project uses the Parts.db table
(from the Delphi example MASTAPP application). Some
fields are displayed in the grid, and one field is user-defined
(calculated). The field value is calculated by the
TFormulaCompilerE component. We can input the formula
using field names, and the result field will be recalculated
according to this formula. It’s possible to use a formula from
the predefined functions.

Conclusion
The FormulaCompiler package allows us to evaluate arith-
metic expressions on-the-fly, at run time. Because it’s a real
expression compiler, it provides very quick function evalu-
ation. It performs full syntax checking of the function to
be compiled and detects all possible errors. The
TFormulaLib components provide a convenient tool for
creating and maintaining user function libraries. Add the
TFormulaCompiler component to a project for a fast and
flexible database application. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806VS.

Vladimir is a programmer at JSC Slavneft-YANOS in Russia. He has been work-
ing with Delphi since version 1.0 and is the author of several Delphi components
that can be found at http://www.uniyar.ac.ru/lads/dpage.htm. Vladimir can also
be reached via e-mail at vlads@univ.uniyar.ac.ru or safin@yorp.yaroslavl.su.

http://www.uniyar.ac.ru/lads/dpage.htm

OnGuard
Software Protection for Your Delphi Applications

New & Used

By Alan C. Moore, Ph.D.

Figure 1: The TOg

38 June 1998 Delphi Informant
The shareware concept has certainly had its impact on the software industry.
The ability to try a program before paying for it is extremely attractive to

software users. The problem with shareware (from the developer’s point of
view) is equally well known: The percentage of users willing to register, as a
matter of conscience, has always been small.
Software developers soon realized other
“incentives” were needed to ensure that peo-
ple would register the software they were
using. As the shareware concept evolved,
commercial software producers took a cue
from the shareware developers and began
offering demonstration versions of their soft-
ware. Unfortunately, some of the early
demonstration versions did little more than
indicate the look and feel of the software.
Today, you can produce nearly- or fully-func-
tional evaluation versions of your software
using a variety of protection schemes — pro-
tection that is essential if you plan to distrib-
MakeCode component editor in action.
ute your applications over the Internet, a
practice which is becoming commonplace.

OnGuard, TurboPower Software’s new library
of non-visual components, allows you to easily
choose from a variety of protection methods.
As we’ll see in the example program I’ve writ-
ten to accompany this review (see end of arti-
cle for download details), you can even com-
bine protection schemes to gain more security.

The Key to Protection
Like the other, more general, software-
protection libraries, OnGuard uses hidden
keys to mask its release codes. While it con-
tains all the power of some more expensive
products, it differs in one important respect:
Because it’s built with Object Pascal and uses
native Delphi components, it’s fully integrat-
ed into the Delphi environment. Therefore,
it’s customizable and extendable.

Using OnGuard’s tools, you can build an
application that is partially- or fully-functional
during a trial period in which your customers
evaluate it. If they decide to purchase your
application, you can simply give them a release
code to unlock any disabled features and make
the program completely functional. This is just
one of many scenarios that OnGuard supports.
Others include releasing several different ver-
sions of the same software in a single .EXE file,
establishing a leasing system, controlling the
numbers of users on a network, and more.

As already mentioned, OnGuard’s protection
system is based on the use of keys and release
codes. There’s an important difference
between these two crucial data items: Keys are

Component Name Description

TOgDateCode A start/end date release code wi
encoded; used to limit features o
application can be used.

TOgDaysCode This release code limits the days
ed) that an application (or specif
can be run.

TOgUsageCode This release code limits the numb
application can be executed.

TOgRegistrationCode Text-based release code derived
name, a company name, or any
be stored in a string.

TOgSerialNumberCode Integer-based release code that
serial number.

TOgNetCode Release code to monitor and re
number of simultaneous instan
run on a network.

TOgSpecialCode Special release code for other pr
defined schemes.

Figure 2: The OnGuard release-code components.

New & Used

Figure 3: An example program that uses the TOgDateCode
component.

Figure 4: An example program that uses the TOgUsageCode
component.
generally random in nature, their sole function being to mask
the release codes. The data within a release code is meaningful,
e.g. the first two bytes indicate the particular type of OnGuard
component with which the release code is involved. The
remaining bytes provide component-specific information.
39 June 1998 Delphi Informant
Two non-visual components are central to the
process of creating keys and release codes:
TOgMakeKeys and TOgMakeCodes. The for-
mer allows you to create and maintain keys
for all your applications, while TOgMakeCodes
enables you to produce the 8-byte release
codes. These keys are used to encode and
decode the release codes that the main
OnGuard components use. Best of all,
OnGuard provides two helpful component
editors to manage keys and release codes.
There is one utility — an example Code
Generator program that, given a key and pro-
tection-type information, will give the result-
ing release code. The example program and
the component editor that it brings up are
both shown in Figure 1. The component edi-
tor is related to the TOgMakeCodes compo-
nent that we will now discuss.

TOgMakeCodes’ component editor displays a
multi-page dialog box when its Execute

method is called (by double-clicking on any of the main compo-
nents we’ll discuss presently). The dialog box allows you to create
any of the several types of release codes. Each release code consists
of 8 bytes, and is viewed and entered as 16 hexadecimal digits.

Similarly, TOgMakeKeys is another non-visual component that
displays a small dialog box when its Execute method is called.
You can choose from three types: random, standard text, and
case-sensitive text. Random is the most common. Using a
speed button, you can save the new key to the Clipboard for
later use in the application.

Let’s take a look at the release-code components.
TOgCodeBase, the ancestor class for OnGuard’s seven special-
ized release-code components, descends directly from
TComponent. Several of its properties and methods are com-
monly used in its descendants. These include the important
AutoCheck property and the corresponding CheckCode
method. The former makes sure your application automatical-
ly checks for a proper release code before running; the latter
checks for a valid release code. Since the latter method is
abstract and virtual, each descendant overrides it and imple-
ments the checking in an appropriate way.

Let’s examine each of the descendent components; their
names and descriptions are given in Figure 2. You’ll notice the
first three components all have to do with a time frame in
which an application can be run: TOgDateCode uses a start
date and an end date, TOgDaysCode keeps track of days run,
and TOgUsageCode simply limits the number of times an
application can be run. TOgDateCode isn’t especially secure, as
a user could change a computer’s clock so the date is within
the acceptable date range. Still, it might be useful in some sit-
uations, or in combinations with other protection strategies.
Figure 3 shows an example program that uses the
TOgDateCode component. Figure 4 shows another example
program that uses the TOgUsageCode component.

th both dates
r when an

(times unlimit-
ic features of it)

er of times an

from a user’s
data that could

checks for a

strict the
ces that can

ogrammer-

Figure 5: The component editor page used to set up a serial
number.

New & Used

Figure 6: An example program using the code
established in Figure 5.

Figure 7: Look at what happened when I ran this example program
after altering just one byte!
TOgDaysCode, which keeps track of the number of days that
an application, or some of its features, can run, is also open
to user tampering. Here, someone would probably just need
to restore an .INI file, or the registry entry to a previous
day’s setting, to gain access to the application. Both of these
methods call for additional security measures. With
TOgDaysCode, an application can be run an unlimited num-
ber of times each day.

To limit the actual number of times an application can be run,
use the TOgUsageCode. This protection method is more secure
than some of the others, but a clever user could still defeat it
with some effort. It has a built-in feature that keeps track of the
last date the counter was decremented, adding further security.

The next two components provide tools for setting up a regis-
tration process. Based on strings or textual data,
TOgRegistrationCode can be used to create a simple-but-effec-
tive type of release code, particularly if used in combination
with other approaches. The text used in the release code
could be based on a user’s name, a company name, or similar
data that can be stored in a string.

Similar to this, but based on numerical data,
TOgSerialNumberCode can be used to create a serial-number
release code. An obvious difference is in the data that is used
as part of the code generation process. The Serial Number
Registration release code uses a number instead of a text
string. This is one of the more secure methods. Figure 5
shows the component editor that sets up a serial number.
Figure 6 shows an example program that makes use of the
release code established in Figure 5.

The last two release code components are different from those
we’ve looked at so far. TOgNetCode creates a release code that
limits the number of instances of an application that can run
on a network at the same time. It uses a network release code
and a network access file to accomplish this. This release-code
component is a bit more involved than the others since it needs
40 June 1998 Delphi Informant
to monitor your application’s status on the network and take
appropriate actions. For example, in addition to keeping track
of the actual number of instances running, it needs to deal with
instances that have not been terminated properly. Unless these
are dealt with properly, they might prevent a legitimate instance
from running. Obviously, this component is useful for applica-
tions that are intended to run on a network. For example, with
TOgNetCode you could create a demonstration that could run
on just one or two stations concurrently, or you could enforce a
licensing scenario.

The final release code component is special; in fact, it’s called
TOgSpecialCode. Based on a special value — a long integer —
it lets you construct a release code containing any kind of
data you want. For example, you can use the individual byte
fields within the Longint to store information about specific
features of your application that should or should not be
implemented. For additional security, you can store a specific
build number tied to a specific serial number. Because these
components’ release code is masked with the secret key
embedded in your application, you increase the difficulty in
hacking your security system when you use more than one.

Non-release-code Components
OnGuard includes two additional components that are useful
in other situations where a different kind of security is need-
ed: TOgProtectExe detects any changes to an .EXE file, and
TOgFirst provides a means to determine if a second instance
of an application is being run. The first of these components,
TOgProtectExe, is particularly useful in guarding against a
virus being attached to an executable file, or preventing a user

Procedure/Function Purpose

InitUsageCode Using key, a usage count, and
an expiration date initializes an
appropriate release code.

IsUsageCodeValid Boolean function that returns
True if usage code is valid.

IsUsageCodeExpired Boolean function that returns
True if usage code is expired.

GetUsageCodeValue Longint function that returns
current value of usage code.

DecUsageCode Using key and current release
code, decrements remaining
usages and returns a new value
in the release code field.

Figure 9: TOgUsageCode’s low-level procedures and functions.

New & Used
from tampering with a file in an attempt to defeat a protec-
tion scheme. Like the code-maintenance components, it pro-
vides an AutoCheck property and an OnChecked event to
check the .EXE file every time it’s run (see Figure 7).

Some applications are intended to be run as single instances.
On the other hand, you may want to restrict a demonstration
application to running as a single instance, which provides the
option of multiple instances once the product has been regis-
tered. The TOgFirst component provides an easy way to
detect whether an application is running, and optionally bring
the currently running application into focus if the user
attempts to run another instance (see Figure 8). The
IsFirstUnit routine determines if the .EXE file is running. The
ActivateFirstInstance procedure facilitates bringing the first
instance of the application into focus whenever the user
attempts to run another instance.

Two Ways to Use the OnGuard Library
OnGuard not only provides many protection options, it also
allows you to choose the level at which you use its protection
tools: 1) the component level that we have been discussing,
and 2) the procedural level. The latter approach provides a
good deal more control but (as you’ve already guessed) also
imposes more responsibility on the programmer. You become
responsible for creating, checking, and, in some cases, updat-
ing release codes. Particularly in cases where you need to
determine when and how checking is done, it makes a lot of
sense to use this lower-level approach. The example program
for this article provides one specific example. Let’s begin with
an overview of the program, review the low-level routines
used, then take a more detailed look.

The main form file uses the TOgSerialNumberCode to first
check for a valid serial number. Then, if an invalid number or
no number at all is entered, it uses procedures associated with
the TOgUsageCode component to enforce a demonstration
version of the application. Once the application is properly
registered, these procedures are no longer needed. The logic of
this protection scheme is shown in the flow chart in Figure 8.
The procedures and functions used are shown in Figure 9.

Please note that these are the low-level procedures for just one
of the seven means of protection. Similar procedures are pro-
vided for the others. Most are located in a single unit, appro-
priately called OnGuard, that also implements most of the
components. This makes it extremely easy to use the compo-
nents and the low-level procedures in an application. So, how
does the new example application work?

A New Example Program
The common practice used in OnGuard is to use an .INI
file to keep track of registration and other protection data.
While it is somewhat safe to store a release code in an .INI
file, it’s out of the question to store a key file there. The
enumerated type, ProgramStatus, is used to keep track of
registration data with three possible values: psRegistered,
psDemo, or psInvalid. The property CurrentProgramStatus
keeps track of the current setting.
41 June 1998 Delphi Informant
The first procedure,
SetDefaultDirectory,
ensures that the .INI file
will be in the same direc-
tory as the application. If
there is no .INI file
found, this indicates the
user hasn’t entered regis-
tration information. If
so, the user has the
option of entering the
release code immediately,
which takes place in the
EnterSerialCode proce-
dure. Otherwise, the
third procedure, CreateIniFile, is called to create a new .INI
file, and to write a usage code to that file to limit the applica-
tion to just five runs. (Of course, the user could delete the
.INI file after the five runs and get five more demonstration
runs. Further protection is called for!)

Every release-code component includes four events, the first
three of which are required to have handlers. In this applica-
tion the event handlers are as follows:

GetKey, which reads the value of the embedded key;
GetCode, which checks for the existence of the .INI file
and reads the release code from it; and,
CodeChecked, which determines if the code is valid.
Because we are not using any modifier in this application,
there is no need for an OnGetModifier event handler.

The GetCode procedure calls SetDefaultDirectory. Then, if
no .INI is found, it calls CreateIniFile which, in turn, calls
low-level routines to set up the usage code, particularly
InitUsageCode. This procedure creates the release code from
the key and the number of uses you want to allow for the
demonstration version. Likewise, the CodeChecked proce-
dure, which takes appropriate actions based on the status of
the code, also calls a low-level usage code procedure,
CheckUsageCode. This only happens in the case of an
invalid code, indicating that the proper Serial Number
Code has not been entered. You’ll note that other usage
code procedures are used, including DecUsageCode, which

Figure 8: This flow chart shows one
protection scheme implemented in
the example program.

New & Used
decrements the usage counter every time the demonstration
version of the application is run. Hopefully, the remainder
of the sample application will become obvious by studying
the source code. (The project is available for download; see
end of article for details.)

Manuals, Examples, and Free Help
TurboPower is noted for its excellent manuals and example
programs. The OnGuard library continues that tradition.
When I began working with this product, something interest-
ing happened: Completely by surprise, and with no request
from me, a new supplement to the manual and an updated
program disk arrived via Federal Express. As the letter accom-
panying the materials explained, there had been some com-
plaints about the original manual (I’m not convinced these
were justified) that were addressed in the supplement.

This new, 34-page document included a more detailed expla-
nation of keys and release codes for those unfamiliar with
such concepts, an expanded tutorial, and detailed information
on the low-level routines I mentioned previously. The disk
provided seven new example programs to accompany the large
collection included in the original release. Proactive, cus-
tomer-service actions like this are a hallmark of this excellent
company, and continue to ensure a loyal customer base.

TurboPower continues to provide free support for all its prod-
ucts, and free update patches via its Web site. Also, you can
download demonstration versions of all of their programs,
including OnGuard. To really get a good idea of what this prod-
uct can do, you can download it, install it into Delphi (any ver-
sion), then test it with the demonstration program I’ve written.

Conclusion
Needless to say, I recommend this product highly for all
Delphi developers writing and distributing their applications.
You work hard to produce the fine software that bears your
name. You should be compensated properly for that hard
work. By providing excellent tools to help you produce effec-
tive demonstration versions of your software, OnGuard can
help make that happen. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUNE\DI9806AM.

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabili-
ties in applications, particularly sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.
42 June 1998 Delphi Informant
OnGuard is a powerful collection of
components, component editors,
classes, and low-level routines that
provide an effective means of pro-
tecting applications in many ways. It
can be used to check for proper reg-
istration, implement demonstration
versions, and monitor the running
status of an application on a network
or a single computer. With its excel-
lent documentation and large num-
ber of example programs, OnGuard’s
components are very easy to inte-
grate into Delphi applications.

TurboPower Software
P.O. Box 49009
Colorado Springs, CO 80949-9009
Phone: (800) 333-4160 or
(719) 260-9136
Fax: (719) 260-7151
E-Mail: info@TurboPower.com
Web Site:
http://www.turbopower.com
Price: US$199

http://www.turbopower.com

4

TextFile

Collaborative Computing with Delphi 3

Learn Graphics File Programming with Delphi 3
This book is, perhaps, the
most daring Delphi book I’ve
read. It asks the truly obscure
questions: “What is organic
computing?” “What can the
Borg (alien nemesis in Star
Trek: First Contact) teach us
about the future of comput-
ing?” Then there’s my ques-
tion: “How far can an author
run with his passion for allit-
eration without losing his
readers?” More seriously, the
central question is: “If
client/server is dead, what’s
next?” The answer: collabora-
tive computing, of course.

James Callan’s Collaborative
Computing with Delphi 3 is
also daring in its target audi-
ence, which includes
client/server consultants,
business analysts, SQL devel-
opers, Web developers, and
IT managers. In other words,
it’s for just about anyone con-
nected with Windows/Delphi
development. Remarkably, it
goes a long way on the path
to achieving that goal.

Collaborative computing, as
Callan presents it, has more
to do with communication
among computers, applica-
tions, and components than
with people engaging in team
programming. The author
discusses COM, DCOM,
ActiveX, and other newer
technologies that help make
such collaboration easier, but
his major emphasis is on
database and client/server
development. He discusses
normalization, cached
updates, SQL joins, security,
and other similar topics.
3 June 1998 Delphi Informant
Callan presents his new
computing paradigm with
seven principles he calls
“demandments.” For exam-
ple, under the first one,
“Sell Savvy Strategies,” he
presents an interesting phi-
losophy of computing in
which he gives practical
advice on dealing with the
increasingly rapid rate of
change in our field.

Before we examine the con-
tents of the book, let’s con-
sider the definition of col-
laborative computing: “a
model for creating software
based on role-driven compo-
nents, which communicate
with each other to achieve
highly synergistic out-
comes.” Callan points out
that “Like people, computer
collaborators must be man-
aged.” One of the most
effective ways of performing
this management is through
OOP techniques, which
allow us to define the roles
of program elements and
organize them logically. He
covers a wide range of OOP
topics, from basic elements
to the differences between
class methods and object
(instance) methods. Now
that we have a better notion
of what collaborative com-
puting is, let’s take a quick
tour of the book.

The first 60 pages will cer-
tainly aggravate some readers.
I can hear it now: “Where’s
the code?” There’s not even
much discussion of Delphi.
That all changes in chapter
five. Callan starts to outline a
fairly involved database appli-
cation to enable collaborative
communication between peo-
ple. Refreshingly, he con-
structs a Paradox database
from the ground up, and
deals with topics you don’t
always find in works that rely
on Delphi’s sample databases,

“Collaborative Computing with Delphi 3”
continued on page 44
Derek A. Benner has mined a
very narrow niche in the
Delphi books market with
Learn Graphics File
Programming with Delphi 3.
Citing the inherent Delphi
shortcoming — limiting image
support to the Windows
.BMP, .WMF, and .ICO for-
mats — as a driving force
behind his research, Mr
Benner made the effort to
compile this research into book
form. Though the title indi-
cates that programmers will
learn graphics file program-
ming, they must be prepared
to approach this advanced text
with additional resources to
absorb the material.

The objective of the three
initial chapters is to provide
programmers with the back-
ground needed to under-
stand how graphics are dis-
played in the Windows envi-
ronment. Unfortunately, the
reader might be left unful-
filled after seeing the materi-
al. Chapter two, “Windows
Graphics Basics,” contains
six scant pages of informa-
tion on the topic. Relevance
is also an important consid-
eration; the CGA and EGA
display modes have limited
value in today’s environ-
ment. One important topic,
crucial to successfully
absorbing the information, is
the Device Independent
Bitmap (DIB), and it should
receive much more atten-
tion. The acronym is used
heavily throughout the
book, referenced as the mid-
dle layer between the appli-
cation and the device driver.
However, it’s difficult to
locate an expansion on the
subject. DIB files should
have been fully explained in
the first few pages.

“Learn Graphics File
Programming with Delphi 3”

continued on page 45

Collaborative Computing with Delphi 3 (cont. from page 43)

TextFile
e.g. secondary indexes. The emphasis here is on good database
design and creating an effective user interface. You’ll
encounter many useful tips and approaches during these five
chapters (nearly 150 pages).

Much of the remainder of the book builds the basic frame-
work of another ambitious application, providing another,
more complete model for collaborative computing. In chap-
ter 16, “Bier Busting in Belize,” you find yourself transport-
ed to Germany as the IT manager of Perfect Plastics, Inc.
Your task is to effectively manage your company’s business
expenses. Here you might be reminded of Delphi
Programming Explorer [Coriolis Group Books, 1995] — by
Jeff Duntemann, Jim Mischel, and Don Taylor — with its
excursion into the realm of fiction. However, Callan’s
approach is different. His fictional narrative is less for the
sake of entertainment, and more to provide a real-world
scenario that demonstrates collaborative computing. In fact,
it reminds me of some of the case histories in Steve
McConnell’s Rapid Development [Microsoft Press, 1996].

This chapter develops various solutions to the problem of
using Entity Relationship Diagrams (ERDs). After refining
the basic ERD, the author uses it to design a database in the
following chapter, then builds a user interface to provide
access to the database. Using Borland’s Local InterBase
Server, he creates a prototype on the desktop. Then, through
a nice exploration of SQL, he shows how to scale up beyond
the desktop. Finally, he shows how to deploy it on the Web.

Many of the techniques demonstrated in these chapters rely
on technologies beyond Delphi. Many third-party (freeware,
shareware, and demonstration) tools are included on the
CD-ROM, and are referenced in the text. I found this
approach helpful.

This overview of the book provides some indication of its
contents. However, an important question remains: Who will
benefit from reading this book? Although the publisher lists it
as “Advanced,” I can’t completely agree. First, I don’t believe a
really advanced database programmer will find that much new
information here except, perhaps, in the final chapters, which
provide an introduction to deployment on the Web.

On the other hand, I do feel this book could benefit a lot
of intermediate-level developers who are just beginning to
explore some of these technologies. This book is ideal for
someone who wants to quickly get up to speed in
client/server programming, and develop an understanding
of the large context in which such development operates.
Clearly, Callan is a programmer with a wealth of experi-
ence. In these pages, he freely shares insights gained
through many years of work in this field. Even if you
don’t agree with his views, I think you’ll find them inter-
esting and worth pondering.

— Alan C. Moore, Ph.D.
44 June 1998 Delphi Informant
Collaborative Computing with Delphi 3 by James Callan,
Wordware Publishing, Inc., 2320 Los Rios Blvd. #200,
Plano, TX 75074, (972) 423-0090.
ISBN: 1-55622-554-7
Price: US$59.95
(827 pages, CD-ROM)

TextFile
The two chapters that follow are entitled “Using and
Modifying the Windows System Palette” and “File
Compression Basics,” respectively. Working with the system
palette is covered in a brief reference to some of the API func-
tions needed for manipulation purposes. The programmer’s
education is supported by the presentation of a palette viewer
project. File compression is given a fair bit of attention that
includes lucid explanations of several popular compression
schemes, such as LZW and Huffman encoding. This is excel-
lent information for all programmers, regardless of their
graphics interests. Chapter five, “Dithering and Color
Quantization,” covers topics important to the programmer,
but difficult to understand without knowing the basics of
Windows display schemes.

The remaining chapters are devoted to working with specif-
ic file formats grouped by their storage scheme. Coverage
includes uncompressed files (.BMP and .TGA), run-length
encoding (MacPaint, .PCX, and .IMG), dictionary-based
(.GIF, .PNG, and .TIF), and a miscellaneous files section
that covers .JPG and FlashPix formats. Some of these
image file formats are superfluous and out of place in this
volume; there is little chance that the Windows program-
mer working on modern platforms will encounter them.
The format-specific chapters share a similar presentation
format: A brief text presentation of the file format is fol-
lowed by extensive code listings meant to be integrated in
the graphics viewer project.

Of greatest interest to the general business applications
programmers are the chapters pertaining to the .BMP and
.JPG file formats. The Windows .BMP is probably the eas-
iest display format to understand for two reasons. First, it’s
the default Windows bitmapped image file format, and is
directly addressed by the Delphi TImage component.
Secondly, the image is stored internally bit-for-bit as it was
created, so there are no compression algorithms to compli-
cate the process of reading or writing the file. The author
adds to his explanation by presenting code that exposes the
reader to the process of reading and manipulating the
bitmap. This is more educational than just using the meth-
ods of the TImage component.

Readers will find the chapter dealing with the .JPG file
format interesting because of its unique trait of using a
lossy compression algorithm, a technique that compresses
the file size by omitting pieces of the image. This type of
image was designed from the start to support photographic
images and the varying degrees of color contained within
them. A lossy compression algorithm operates on the theo-
ry that parts of an image can be deleted without serious
visual degradation. The author includes an important fact
sometimes lost on those working with graphics files:
Repeatedly writing a JPEG image to a .JPG file will result
in continued image degradation. He reminds the reader
that JPEG is not the proper image choice for an image
that must stay the same as the day it was written. The

Learn Graphics File Programming with Delphi 3 (c
45 June 1998 Delphi Informant
chapter closes as all others do: with the code necessary to
read and write the file type.

Despite its title, this book won’t allow readers to lay claim to
being a graphics file expert; nor is it a primer. And the primer
material that is provided isn’t sufficient to bring programmers
to the point where they can begin to produce the code
included in the book. The amount of text contained in the
book on all topics measures less than half of the number of
printed pages. The majority of the 422 pages are composed of
code listings taken directly from the CD-ROM included with
the book. With a title such as this, much more space should
be devoted to step-by-step explanations of file manipulation.
The code that is presented should be heavily commented
snippets of the programs, printing a complete listing only
when a contextual perspective is necessary. If a second edition
of this book is being planned, more attention should be paid
to the editing, because the text and the code listings don’t
match in a number of cases. The author’s writing style also
makes for a difficult read. There is little transition between
chapters, and many thoughts end abruptly.

The code included with the book is difficult to work with.
It shows up in the listings without explanation, and occa-
sionally doesn’t match the explanatory text. If the program-
mer is typing the code, should the procedures be included?
This isn’t explained. More likely, programmers will choose
to load the code from the CD-ROM, but there is a caveat
there as well: The chapter directories don’t match the print-
ed chapters. All the code appears to work as long as the
reader carefully emulates the directory structure implied by
the text. Don’t try to place these programs in your project’s
directory without being prepared to debug the problems
that will appear. The CD-ROM also contains a directory
filled with shareware components.

The material in the book would be better presented in an
anthology-type presentation rather than presenting such
topics as the MacPaint file format and endless pages of code
listings to fill space. An even more appropriate setting
would be a series of magazine article installments. The book
is not a good value if you’re seeking an in-depth learning
experience on the topic of graphics file programming tech-
niques. On the other hand, if your project needs to add
compatibility with the file types discussed in the book, this
would be a good source for the code alone. Perhaps a second
edition will consider the more descriptive title: Graphics File
Formats Handbook.

— Warren Rachele

Learn Graphics File Programming with Delphi 3 by Derek A.
Benner, Wordware Publishing, Inc., 2320 Los Rios Blvd.
#200, Plano, TX 75074, (972) 423-0090.
ISBN: 1-55622-558-X
Price: US$49.95
(422 pages, CD-ROM)

ont. from page 43)

What RAD Really Means

From the Trenches
Directions / Commentary
I’ve seen the term RAD thrown around a lot. Usually, it’s in reference to some problem that Delphi didn’t
solve with a wave of the mouse and a double-click. This is then followed by a statement along the lines

of, “This isn’t RAD.”
RAD, which stands for Rapid
Application Development, is a lot of
things. It can go to the very heart of the
development process to help teams reach
their goals in a more timely manner by
combining many different techniques,
such as prototyping and CASE tools.

RAD is not a silver bullet that trans-
forms anyone who can open a develop-
ment tool into a productive program-
mer. As much as Delphi does, there is
always an entry price. Delphi does as
much — or more — to obscure the
gory details of Windows API program-
ming as any tool on the market.
Especially when you consider the flexi-
bility that Delphi allows; it gives you
the power to actually delve into the
depths of the API, if you so desire.

Perhaps the amount of success a devel-
oper obtains by getting a prototype up
instantly actually works against Delphi.
By this, I mean someone codes an
application that’s “done” almost imme-
diately. When they have trouble bring-
ing the application to completion, the
tool is suddenly looked at with disdain.
“This isn’t RAD.”

When the initial euphoria of the proto-
type wears off, and the programmer
wants to go beyond the cursory, a high-
er level of knowledge is required. A pro-
gramming tool such as Delphi cannot
shield programmers from knowing how
to program.
46 June 1998 Delphi Informant
As in life, Delphi’s strength probably
contributes greatly to its weakness.
Because Delphi successfully prevents
developers from having to recall vast
tidbits of trivia relating to the
Windows API, a functioning applica-
tion can be built in record time.
Because Delphi can take them so far
so easily, some developers feel cheated
when it can’t take them further with-
out becoming familiar with the tool
and environment.

The 80/20 rule in software program-
ming has existed for many years. This
rule states that 80 percent of the
application will be coded in 20 per-
cent of the time. My argument is that
Delphi gets you to the 80-percent
point quicker than any other tool out
there. Period. Furthermore, I also
believe that finishing the last 20 per-
cent of the project with Delphi is at
least as fast as other tools. The results
are magnified if you compare the same
development techniques and planning
across tools. It’s not fair to point the
finger at Delphi when there wasn’t any
planning. A project like this would
inevitably encounter a rough spot no
matter what tool was used.

Perhaps an example using the classic
building analogy would more clearly
illustrate what I’m talking about. If I was
a building engineer and a tool came
along claiming to build houses in record
time, I would definitely evaluate, and
probably use, that tool. But that would
not preclude me from having to know
the underlying fundamentals of building
design and construction, especially as it
pertains to the local building codes. After
all, I wouldn’t want to build a house in
Wisconsin based on Southern California
needs. I would also have to know how to
solve problems by picking up a hammer
and pounding a nail in the right place if
the tool didn’t do it properly.

Using Delphi, programmers will typical-
ly see an increase in productivity.
However, to fully realize the benefits that
Delphi can bring to your shop, you
must look beyond what a tool provides.
You must look at how that tool can fit
into your overall development efforts.
For more information on how to turn
your shop into a “rapid development”
shop, refer to Steve McConnell’s Rapid
Development [Microsoft Press, 1996]. ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact him
at http://www.execpc.com/~dmiser.

http://www.execpc.com/~dmiser

File | New
Directions / Commentary

4

Delphi’s Own API
W ith its expert interface and Open Tools API, Delphi is incredibly extendable and customizable. In fact,

it’s the polymorphic programming environment par excellence of the late 1990s. Taking advantage of
that power, however, is another matter. Until now, you had to learn the language of Delphi’s API by either
studying the source files (VirtIntf.pas, ExptIntf.pas, etc.), or reading Ray Lischner’s comprehensive treatises:
Secrets of Delphi 2 [Waite Group Press, 1996] and Hidden Paths of Delphi 3 [Informant Press, 1997].
Now there’s an easier way. Last October, I
wrote a review of a powerful Delphi add-
on named Raptor, then in beta and subse-
quently released as CodeRush. There, I
concentrated on its extensive keyboard
templates and its panels. What prompted
its creation? Its main architect, Mark
Miller, explains: “High-speed tools are the
nature of our business. Once [new pro-
grammers begin] to master Delphi, [they]
begin to realize the need for new tools and
features.”

But there’s another side to CodeRush
— a powerful API called RAPID —
which gives us much easier access to
Delphi’s API. With RAPID you can create
your own CodeRush add-ons or panels,
and extend Delphi in just about any way
imaginable. It also gives you access to
undocumented Delphi capabilities that
could otherwise involve weeks of hacking.
Miller encouraged me to write my own
CodeRush plug-in, which I did. With its
bookmarked, heavily-commented tem-
plates for each type of add-on, I found the
whole process remarkably easy. I wrote a
plug-in to make project identifiers readily
available at any time.

While Delphi 3 and CodeRush both pro-
vide tools for quickly inserting text into
code, neither provided the exact function-
ality I was looking for. I needed a means
of storing application-specific identifiers
(variables, procedure names, etc.), which I
could select from a drop-down list and
paste into code.

My First CodeRush Plug-In
Using a CodeRush template file as a basis,
I quickly wrote a basic outline. Since I
needed to add a Combo box to the
CodeRush toolbar, I also studied another
template file that explained how to add
7 June 1998 Delphi Informant
new toolbar controls. As with Delphi
experts, CodeRush plug-ins require the
implementation of certain basic house-
keeping functions. Since I planned to add
entries to the Editor menu, I also had to
create command constants and resource
string captions for each menu item —
and make sure everything was properly
registered with CodeRush.

You may be wondering, “Is it possible to
add new commands to Delphi’s Editor

menu without CodeRush?” The answer is,
“Yes, but not easily.” I had read Lischner’s
discussion of menu interfaces in Hidden
Paths; I checked again, but found nothing
concerning this menu. I wrote to both
Lischner and Miller and got essentially the
same answer: “You can do this, it’s been
done, but it’s undocumented and fraught
with danger.” They both provided hints
on how to proceed, but I decided to con-
centrate instead on building this plug-in.

Next, I added the new Combo box to the
toolbar. I needed to create handlers for the
added functionality (double-click and key-
press handlers) and register everything.
Now, whenever I double-clicked on the
Combo box, the focused identifier would
be pasted into the code at the current
pointer position. Just what I wanted!

There’s more detail and features, but this
gives you an idea of what’s involved. You
can download the plug-in’s full source
code and compiled package from the
Delphi Informant site (you’ll need
CodeRush to run it). Also, I plan to write
a more detailed account of this plug-in
and publish it on the Eagle Software site
(http://www.eagle-software.com).

You may be thinking that none of this
really applies to you as an application
developer. Consider what Danny Thorpe
wrote in his book Delphi Component
Design [Addison-Wesley, 1995]: “[Writing
custom components] is an occasional task
that should be in the repertoire of a sharp
application writer.” Today, I would extend
this to writing experts and IDE add-ons.
Mark Miller says, “I will always trade two
weeks of tool development for a 10-sec-
ond savings in time, providing that sav-
ings can be applied several times, every
day, ideally by every member of your
development team.” Beyond the total sav-
ings of time is “preventing an interruption
to the flow of creativity which could easily
cost 20 minutes or significantly more
[with the introduction of bugs].”

I think developing new productivity
tools is definitely something worth
considering for all of us. If you would
like to hear more on this topic, please
let me know. ∆

— Alan C. Moore, Ph.D.

The files referenced in this article are
available on the Delphi Informant
Companion Disk, or for download from
the Informant Web site at http://www.-
informant.com/delphi/dinewupl.htm.
File name: DI9806FN.ZIP.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number
of articles in various technical journals.
Using Delphi, he specializes in writing cus-
tom components and implementing multi-
media capabilities in applications, particu-
larly sound and music. You can reach Alan
via e-mail at acmdoc@aol.com.

http://www.informant.com/delphi/dinewupl.htm
http://www.eagle-software.com
http://www.informant.com/delphi/dinewupl.htm

	Table of Contents
	Delphi Tools
	Research Systems Announces IDL 5.1
	Inner Media Delivers Active Delivery
	HyperAct Introduces eAuthor Help 2.0
	Digital Metaphors Introduces ReportBuilder 3.5
	Tetradyne Releases SourceView ActiveX Control
	20/20 Software Ships softSENTRY 2

	Newsline
	Borland Completes Acquisition of Visigenic
	Borland Ships Delphi/Connect for SAP
	Borland Brings Java to the AS/400 with JBuilder/400 Client/Server Suite
	Borland Japan Adds Enterprise Sales and Support Staff
	Errors and Omissions

	On the Cover: WinSock 2
	WinSock 2 Speaks Esperanto
	Using WSAEnumProtocols
	Putting WSAEnumProtocolsto Work
	Starting and Ending TowerOfBabel
	Using the WSAEnumNameSpaceProvidersAPI
	Looking Ahead
	Resources

	OP Tech: Delphi Import/Export
	Working with Objects that Use Files
	Using FileStream Objects
	Fiddling with Bits
	ODBC Drivers
	Conclusion

	Algorithms: Tough Decisions
	Decision Trees
	Exhaustive Search
	Branch and Bound
	Hill Climbing
	Random Search
	Conclusion

	DBNavigator: Run-time Type Information
	Getting RTTI for Enumerated Types
	Getting Object Property Listings
	Using RTTI with Properties
	Conclusion

	Dynamic Delphi: COM Callbacks
	A Simple Chat Program
	Chat’s Application Objects
	Implementing the Server
	Implementing the Client
	Conclusion

	Delphi at Work: Pirates Beware!
	Software Licenses
	The Problem
	The Solution
	Using a Lurch Table
	Introducing TSeatChecker
	Using TSeatChecker
	Notes About TSeatChecker
	Conclusion
	Begin Listing One — TSeatChecker

	Greater Delphi: Formula Compiler
	The TFormulaCompilerD and TFormulaCompilerE Components
	The TFormulaLibComponent
	Unknown User Functions and Variables
	FC Errors
	Conclusion

	New & Used: OnGuard
	The Key to Protection
	Non-release-code Components
	Two Ways to Use the OnGuard Library
	A New Example Program
	Manuals, Examples, and Free Help
	Conclusion

	TextFile
	Collaborative Computing with Delphi 3
	Learn Graphics File Programming with Delphi 3

	From the Trenches: What RAD Really Means
	File I New: Delphi's Own API

